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Abbreviations

" - minutes

AT - artificial intelligence

ANN - artificial neural network

BLOB - binary large object

CA - correspondence analysis

CART - classification and regression trees
CAST - clustering affinity search technique
cDNA - complementary DNA

CGI - common gateway interface

CLICK - cluster identification via connectivity kernels
cond. - (experimental) condition

DBMS - database management system
DNA - deoxyribonucleic acid

EBI - European Bioinformatics Institute
ERM - entity-relationship model

EST - expressed sequence tag

exp. - experiment

GO - gene ontology

HMS - hybridization-median-determined scaling
HTML - hypertext markup language

ID - identifier

ISIS - identifying splits with clear separation

LIMS - laboratory information management system
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MCE - multiconditional experiment
M-CHIPS - multi-conditional hybridization intensity processing system
MDS - multidemensional scaling

meas. - measurement (here referring to a dataset that comprises one value per spot for each

spot on the array)

MIAME - minimal information about microarray experiments
min - minutes (also referred to by a ”)

mRNA - messenger RNA

NBS DES - National Bureau of Standards (USA) Data Encryption Standard
OD - optical density

OMG - object management group

ORF - open reading frame

OS - operating system

PCA - principal component analysis

PKC - protein kinase C

REVEAL - reverse engineering algorithm

RNA - ribonucleic acid

SAGE - serial analysis of gene expression

SNP - single nucleotide polymorphisms

SQL - structured query language

tab - tabulator

UML - unified modeling language

WT - wild type

WWW - world wide web

XML - extensible markup language
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Analysis of microarray data:

* Planar embedding of hybridization intensities

* Storage of experiment descriptions

Kurt Fellenberg
Theoretical Bioinformatics Dept.
German Cancer Research Center, Heidelberg

Requirements:

e Integrated DB storage of microarray data stemming from
— radioactive (monochannel) and
fluorescent (multichannel) labelling
— different organisms / fields of research
(yeast, Arabidopsis, human tumor bisopsies, ...)
incl. gene- and experiment annotations

e Preprocessing

e Data analysis and visualization
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... 1In a nutshell

Microarray technology provides access to expression levels of thousands of genes at once,
producing large amounts of data. However, the data show a considerable level of noise, low-
level signal intensities are unreliable and datasets commonly comprise outliers. Moreover, a
gene set observed to have a certain expression profile of interest will contain a considerable
number of false-positives because of the large number of genes under study compared to the
small number of conditions. Therefore, in addition to the ability to make amenable both genes
and conditions, analysis has to meet certain requirements. It has to be capable of integrating
multiple repeat hybridizations for each experimental condition. In addition, the method has

to suppress noise and should not be distracted by outliers.

The talk presents a storage system as well as methods to study interdependencies among large-
scale microarray data. I applied correspondence analysis as an explorative statistical tool to
study interdependencies both between and among sets of variables, i.e. genes and hybridiza-
tions that result from expression profiling. Data are carefully preprocessed and correspondence
analysis is performed in a way that integrates replicated hybridizations, accounts for noise, and
circumvents outliers, thus adapting the method to the particular pitfalls of microarray data.
Correspondence analysis is a projection method. Much like principal component analysis it
displays a low dimensional projection of the data, e.g. into a plane. However, it does this for
two variables simultaneously revealing associations between them. To introduce the method,
I show its application to the well-known Saccharomyces cerevisiae cell-cycle synchronization
data of Spellman et al. (Mol. Biol. Cell 9 (1998), 3273-3297). Furthermore, correspondence
analysis has been applied to a non-time-series data set of our own, thus supporting its general
applicability to microarray data of different complexity, underlying structure and experimental

strategy (both two-channel fluorescence-tag and radioactive labeling).

Any method which is, like correspondence analysis, suitable for the analysis of hybridization
signals, is best used having access to a database holding the large datasets in a defined common
format, ready for preprocessing and analysis. However, it is not sufficient to provide this
platform only for hybridization intensities. It is equally necessary to supplement the intensity
data by information about genes that are represented by the array spots, and about the

experimental conditions for biological interpretation. For interpretation of large data sets,



these annotation data should be in a format amenable to computer aided analysis because
they are too numerous for visual inspection. Including annotated experimental parameters into
statistical analysis offers the opportunity to identify the global players behind transcription

patterns.

Free-text annotations of recent microarray databases are not suited for direct statistical access.
Parameter sets used for experiment annotation still change continously, and standards only
comprise minimal conventions that do not enable extensive description. Complex and highly
diverse experimental settings cause a high complexity and diversity in experiment descriptions,
requiring also a higher flexibility in data storage than that achieved by standard database
solutions. This is true in particular when data are stored in a statistically accessible format
restricted to defined values. A structure which is independent of the particular parameter set
enables updates of annotation hierarchies during normal database operation without altering

the structure.

A system has been developed and implemented to meet the above requirements and to in-
tegrate correspondence analysis into a larger framework of data platform and supplemental
methods. It has been named M-CHIPS (Multi-Conditional Hybridization Intensity Processing
System). It allows for statistical data analysis of all of its components including the experi-
mental annotations. It addresses the rapid growth of the amount of hybridization data, more
detailed experimental descriptions, and new kinds of experiments in the future. Although
different organism-specific databases may contain different parameter sets for experiment an-
notation, they share the same structure and therefore can be accessed by the very same

statistical algorithms.



Correspondence Analysis
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Intensity Table control condition condition 1 condition 2

hybr. 1 hybr. 2 hybr. 3 hybr. 4 hybr. 5 hybr. 6 hybr. 7 hybr. 8 hybr. 9
genel | 14,243 12,154
gene2 | 5323 27,152
gene3 | 10,300 1,407
gene4 | 1,007 3,101
gene5 |100,232 120,993
gene 6
gene7
gene 8
gene 9

mRNA is prepared from cells growing under specific experimental conditions. It is labeled, i.e
converted to more stable cDNA by reverse transcription using radioactively or fluorescence-
tagged nucleotides and hybridized to an array. The scheme depicts only radioactive-label, i.e.
a single-channel setup for simplicity. The detected signals are then converted into numbers by
imaging software. 1 will refer to a set of conditions as a multi-conditional experiment when
all hybridizations are done with reference to one and the same control condition. Multiple
measurements for each condition, involving repeated sampling, labeling and hybridization,

offer the opportunity of extracting more robust signals. For the simple case of one channel per



hybridization and with repeatedly performed hybridizations for each experimental condition,
I will call the individual data set a measurement and represent it by a separate column in the

table. One condition of a multi-conditional experiment can thus comprise several columns.
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However, the intensity measurements in this table must not be taken at face value. Different
levels of background may result in additive offsets, or different amounts of mRNA or different
label incorporation rates may lead to multiplicative distortions among the measurements.
Therefore the columns of the table have to undergo a normalization procedure, correcting for

affine-linear transformation among the columns.
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One measurement is fitted versus a control measurement. The performance may be judged
from the scatterplot of the raw data (measurement versus control measurement). In this
plot, a regression line represents the multiplicative distortion (slope) and additive offset
(intersect) determined by the fitting algorithm. The performance of the fit is visible in how
well the regression line matches the central dense part of the cloud. Furthermore it can be
observed which properties of the raw data led to an eventually suboptimal result. The scale
of the plot can be switched between linear and double-logarithmic. In log scale, the
regression line appears as a curve whose curvature depends on the additive offset between

the two measurements.

In order to normalize a whole multiconditional experiment, the above step is iterated. All
measurements are iteratively normalized with respect to one and the same control condition,
such that they can be compared afterwards. M-CHIPS discriminates between mono- and
multichannel experiments, applying different control measurements and iteration steps. For
monochannel (e.g. radioactive) data, each measurement is normalized versus the genewise
median of the hybridizations for the control condition, resulting in absolute intensities. For
multichannel hybridizations, the channel belonging to the control condition serves to normalize
the other channel(s) of the same hybridization. Here, the normalized intensity values are not
analyzed as such, but result in intensity ratios, calculated immediately after normalization.
Normalization requires, that each hybridization comprises one channel obtained from the same

control condition.



Filtering: Extraction of genes showing

e signal intensities clearly above the detection limit,
e significant relative change, and

e good reproducibility of this change

Subsequently it is advisable to disregard all genes which do not appear to be expressed under

any of the conditions, or the transcription values which do not reproducibly change between

the different conditions under study.

transcription intensity

intensity threshold

/\/\
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Distributions of repeated measurements are differential among the genes, depending on the

intensity level. Usually, there are not more than three to five values per gene and condition



available for averaging. Here they are denoted as circles and crosses for control and non-control
condition, respectively. I decided to rely on the minimal separation between two conditions
(minmax-separation). Positive minmax-separation is restricted to well-sorted arrangements of
the measurements of two conditions as shown in the left panel. Outliers as in the right panel
lead to a negative minmax-separation. Tim Beiflbarth developed the idea of diminishing the
separation between the condition-means by one standard deviation (o) of either condition set.
The standard-deviation separation is less restrictive which is preferable when higher numbers
of repeatedly performed measurements are available. In these cases it is desirable to tolerate

single outliers in otherwise well-sorted sets of measurements.

[{=] «Q
[} [}
3 =1
@ o
-< >
=
-~
o
e
=
w
=
o
=
-— w
similar ? —
=]
=
o
=)
@,
=
<
—
i)
=2
)

Given a thoroughly preprocessed data set one expects to be ready to tackle the biological
questions of data interpretation. However, filtering the genes by applying the above constraints
still results in large amounts of data. Typically, the so-to-speak “purified” table of signal
intensities comprises several hundred to several thousand genes. Some of them show similar

transcription profiles.
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The degree of similarity may be measured by different metrics. Absolute or relative similarity
of the values may be taken into account. There may be genes showing very similar values in

some hybridizations while being differential in others.
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A method frequently used for microarray data analysis is hierarchical clustering. It will result

in a tree of genes. It can be cut at different levels resulting in different amounts of clusters.
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The problem is symmetrical: The hybridizations show profiles across the genes ...
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and may be hierarchically clustered as well.



Methods for the Analysis of
Multivariate Array Data

Method Output

O Hierarchical clustering Tree
Eisen et al. (1998), PNAS 95: 14863

O k-means clustering Set of clusters
S. Tavazoie et al. (1999), Nat. Genet. 22: 281-285

O Learning Networks

Neural Networks, e.g. Kohonen Maps Set of clusters
Tamayo et al. (1999), PNAS 96: 2907

Baysian Networks Directed graph

Friedman et a. (2000), Proc. RECOMB 2000: 127

O Planar embedding Biplot

Multidimensional Scaling
Khan et al. (1998), Cancer Res. 58: 5009

Principal Components Analysis
Hilsenbeck et al. (1999), J. Natl. Cancer Inst. 91: 453

O Other Methods
Ben-Dor et al. (1999), J. Comput. Biol. 6: 281 Set of clusters

(incomplete list)

Naming all of the methods

This is an incomplete list of some commonly applied methods.

10

recently used for microarray data analysis would result in an outline of applied statistics.



Classification (supervised learning)

Take as input a grouping of objects, aim at delineating characteristic
features common and discriminative to the objects in the group
("classifier"). For new objects, the classifier can be used to determine
the appropriated group.

Clustering  (unsupervised learning)

Which objects appear to be different, which similar? No group affiliations
have to be known in advance. However, in practise parameters such as
the topology of the map for SOMs or the expected no. of clusters for
k-means clustering have to be selected.

more exploratory

Planar projection, also called planar embedding

Most exploratory. Showing how discrete or fuzzy cluster borders are,
how well groups of objects are separated.

Most methods recently applied to microarray data fall into one of three groups, namely clas-
sification, clustering, or projection methods. Classification methods take as input a grouping
of objects and aim at delineating characteristic features common and discriminative to the
objects in the groups. The characteristic features are referred to as classifier. For new ob-
jects, the classifier can be used to determine the appropriate group. For cancer research, these
objects may consist of different tumor cell lines or of tumor samples of different tumor-types,
stage or grade, often supplemented by normal tissue of the particular organ [17]. Examples
of classification methods range from linear discriminant analysis [14] to support vector ma-
chines [8] or classification and regression trees (CART, [[,L1]). Clustering allows investigation
of which genes or hybridizations appear to be different, and which transcription profiles ap-
pear to be similar. Examples of clustering techniques are k-means clustering [27], hierarchical
clustering [12], and self-organizing maps [26]. Clustering tends to be more explorative than
classification. No group affiliations have to be known in advance. However, parameters such
as the topology of the map for self-organizing maps or the expected number of clusters for
k-means clustering have to be selected. Varying parameters may result in altered output, and

inappropriate parametrization in uninformative results.

Projection methods produce a low dimensional projection of an originally high dimensional
data set. One can, for example, represent genes as numerical vectors with the number of
elements of each vector being the number of hybridizations involved. Therefore those vectors
could be plotted as points in hybridization dimensional space, if only the number of dimensions
were small enough for visualization. Methods such as multidimensional scaling (MDS) [5] or

principal component analysis (PCA) [22,19] as well as the technique described here, project

11



Method Output Reference
Classification
Weighted voting Classifier [17]
CART Tree 7, [11]
Support vector machines Classifier [8,116]
Artificial neural networks (ANN) Classifier [21]
k-nearest neighbors Classifier [B0]
ISIS Bipartitions 28]
Bayesian regression Classifier [29]
Clustering
Hierarchical clustering Tree [12]
k-means clustering Set of clusters [27]
Clustering affinity search
technique (CAST) Set of clusters U]
Kohonen maps Set of clusters [26]
Cluster identification via
connectivity kernels (CLICK) Set of clusters [24]
biclustering Set of clusters [10]
Gene shaving Set of clusters (18]
Planar embedding 2D- or 3D-
(projection) projection plot
Multidimensional scaling [20]
Principal components analysis [19]
Singular value decomposition 2]
Other methods
REVEAL Directed graph 23]
Bayesian networks Directed graph [15]

Table 1: Methods frequently used for microarray data analysis.

12




these points into a two or three dimensional subspace so that they can be plotted. Such an
embedding attempts to represent objects such that distances among points in the projection
resemble their original distances in the high dimensional space as closely as possible. An

example of the above mentioned objects is hybridizations as vectors in gene space.

Correspondence Analysis

O Visualises hybridisations and genes at the same time

O Revedsinterdepencencies (' correspondence’) between
hybridisations and genes

O Exploratory: o no parametrisation needed

o characterises predominant variation:
among the data points

Brief methodology

n gene profiles: m hybridisation profiles:
vectorsin m-dimensiona vectorsin n-dimensional
experiment space gene space

~N S

o  projection into acommon subspace of
low dimensionality for visualisation

o  conserving point to point distances
(total variance) as well as possible
(-> explained variance)

13
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The m columns of a table of n genes x m hybridizations are represented in n-dimensional gene
space (three dimensions are shown). n ranges from a few hundred to tenths of thousands. Most
microarrays comprise several thousand elements. A plane is selected such that the distance
of the hybridization vectors to the plane is minimal, thus conserving point-to-point distances

among these vector points as well as possible.
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Vice versa, one can regard the gene vectors in hybridization-dimensional space, projecting the

genes as done above for the hybridizations.

Intensity

+t+t1+

control condition 1 condit
Hybridizations

To look into the interpretablility of such a plot, let me introduce a constructed (virtual) data

15



example. It resembles real data in that the majority of the genes is lowly or not transcribed
to a measurable amount. It comprises only 24 genes and differs from the real world in perfect

reproducibility among the two hybridizations of each experimental condition.
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This is the expected output, demonstrating the properties of such projections more clearly
than possible by showing a single plot of real data. Gene-clusters are shown together with the
according gene profiles. The abscissa represents the first, the ordinate the second principal
axis. Both axes are dimensionless. The following properties of such a plot are useful for its

interpretation.

e Hybridizations showing high similarity in expression profile, for example because they
belong to the same experimental condition, have a short distance in the 24-dimensional

gene space, and therefore they will be neighbors in the projection as well.

e Genes with high intensities in a condition are located in the direction of this condition.
The two genes located in the direction of the blue condition (upper right corner) are

both upregulated particularly in the blue condition.

e Genes particularly downregulated under this condition are located at the opposite side

of the centroid. One can regard this gene (lower left corner) as being downregulated in

16



the blue condition. Another valid interpretation is, that it is located in the direction of
the bisection line between the red and the green condition because it is equally abundant

in these two conditions.

All genes with unchanged expression, or those not expressed to a measurable amount
in any of the conditions under study are located near the centroid. For experiments
with comprehensive or complete gene sets, i.e. sets not particularly selected for high
expression, the genes that are not detectable will be the majority. The CA plot will
show a centric cloud of many genes lacking significantly changed expression throughout
the experiment. The outer regions of the plot will contain the so-called ‘differential’
genes. Their distance to the centroid will reflect the significance of displaying differing
expression from the ‘average’ ones in terms of y? - statistics, which are placed at the

center of the plot.
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Now knowing at least roughly how to interpret such a plot, let’s have a look on a simple real

data example. Biopsies of both tumor tissue - the tumors being renal clear cell carcinoma

- and normal tissue of the same patient (as a control) have been sampled and hybridised,

imaged, normalized, quality filtered and projected.

The tumor tissues on the left half of the plot - tagged by three colors for three different patients

- are separated from the normal tissue samples on the right. And all the genes upregulated

in the tumor are located on the left side, all those downregulated in the tumor we find in the
right half of the plot.
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To introduce the method, its performance is demonstrated on a well-known data set. This
set comprises the hybridizations referred to by Spellman et al. which are publicly availablef].
Spellman et al arrested the S. cerevisiae cell cycle by four different methods, namely a factor-,
CDC15- and CD(C28-based blocking, and elutrition. At certain timepoints after releasing the
block, samples from each of the methods had been drawn, their cell cycle phase had been

classified and the transcriptional status assayed by microarray hybridization.

The transperancy has been reproduced from P. T. Spellman, G. Sherlock, et al. Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol. Biol. Cell, 9:3273-3297, 1998. It shows gene expression during the yeast
cell cycle. Genes correspond to rows, and the time points of each experiment are the columns.
The ratio of induction/repression is shown for each gene such that the magnitude is indicated
by the intensity of the colors displayed. If the color is black, then the ratio of control to
experimental cDNA is equal to 1, whereas the brightest colors (red and green) represent a
ratio of 2.8:1. Ratios >2.8 are displayed as the brightest color as well. In all cases red
indicates an increase in mRNA abundance, whereas green indicates a decrease in abundance
compared to the control samples (stemming from asynchronous cultures of the same cells
growing exponentially at the same temperature in the same medium). Gray areas (when
visible) indicate absent data or data of low quality. Color bars on the right indicate the phase
group to which a gene belongs (M/G1, yellow; G1, green; S, purple; G2, red; M, orange).
These same colors indicate cell cycle phase along the top. Genes that share similar expression

profiles are grouped. The dendrogram on the left shows the structure of the cluster.

Thttp://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
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The planar embedding (of exactly the same data) produced by CA shows the hybridzations
clearly separated according to their cell cycle phase. They are arranged in circular order of

correct sequence. The lines denoting the direction of the hybridization medians emphasize

20



this arrangement. The black dots correspond to genes. Genes that show strong expression in
a certain phase are located in the direction determined by the hybridizations of this phase.
The farther away from the center the genes are, the more pronounced is their association
with that phase. Genes that are down-regulated in this phase appear on the opposite site of
the centroid. As an example of strong association with the S-phase, the gene profiles for the
histone gene cluster, also marked by Spellman et al., are encircled in black. Their profiles
are shown below (b) which is further subdivided according to the method of cell cycle arrest
that had been used. The red-encircled genes will be discussed below in the context of CDC14
induction. Genes equally transcribed in most or all of the cell cycle states had been removed
by Spellman et al., causing a hole near the centroid of the CA plot where otherwise genes

would lie that show little change.

Upon close inspection the biplot reveals interesting details about the data. It should be
noticed that hybridization cdc15-30 (cdclb-based blocking, 30 min timepoint) classified as
M/G1 (yellow) lies in the green (classified G1) sector rather than in the yellow one. Likewise,
hybridization cdc15_70 is classified G1 but clusters together with the blue dots (S-phase), and
one S-phase hybridization, cdcl5_80, lies in the red sector of G2 hybridizations. All these
outliers come from the series of hybridizations where the cell cycle arrest was achieved using
CDC15-based blocking. This arrangement of cdc15 hybridizations suggests an improper phase

classification for these samples.

This hypothesis can be validated based on the gene profiles. For the histones, the shift towards
an earlier stage in cell cycle is visible in the upper right panel (b). Timepoints cdcl15_30
through cdc15.90 show the upregulation of the histones already at the end of M/G1 (yellow)
instead of G1 (green) as well as too early downregulation: the curves intersect the zero line
(identity to the control channel) at cdc15.90, classified as G2 (red) instead of M (brown),
as e.g. in the elutrition experiment. The nine histones are only a small subset of the 800
cell-cycle regulated genes. Profiles of other genes, though different from the ones plotted,
also display shifting of the above timepoints to expression patterns associated to an earlier
state in cell-cycle by the remaining timepoints (data not shown). CA computes the projection
for timepoints cdc15_30 to cdcl5.90 according to their expression patterns in the entirety of
the geneset, independent of their phase classification. The CA plot displays them displaced in
clockwise shift compared to equally colored squares, that is in positions inconsistent with their
cell-cycle state classification. While clustering together the nine histone genes, the original

figure by Spellman et al. does not properly show this shift.
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Above two transperancies show all information needed to implement a simple CA algorithm.

A much shorter implementation without

It can be easily done by using nested for loops.

loops can be achieved in any programming language supporting matrix multiplication and

providing a routine for singular value decomposition, e.g. in MATLAB (see http://www.ub.

uni-koeln.de/ediss/archiv/2002/11w1296.pdf, Appendix B).
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Alter et al. (O. Alter, P. O. Brown, and D. Bostein. Singular value decomposition for genome-
wide expression data processing and modeling. Proc. Natl. Acad. Sci. U.S.A., 97:10101-
10106, 2000.) successfully applied singular value decomposition to the analysis of the same
data set. In CA plots, the distance of a given gene from the centroid represents the strength
of its association with a hybridization lying in the same direction and vice versa. A direct
comparison with phase and radius in the visualization of Alter et al.fj shows that this is not

necessarily the case in the singular value decomposition alone.

Zas given e.g. at http://genome-www.stanford.edu/SVD/PNAS/Datasets/Sort_Elutriation.txt
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As shown above, it might be useful to visualize deviations of outlying measurements from the

expected state. However, data sets frequently comprise severe outliers such as this one.

Wild type yeast was exposed to different concentrations of sodium chloride in the medium (see
legend). Normalized transcription intensities of 14 genes are shown in a parallel coordinates
plot, lines representing measurements and being color coded according to their particular
experimental condition. The plot presents a typical subset of genes, representative with regard
to the high number of genes not expressed to a measurable amount. Whereas the different
conditions are reproducibly measured for most genes, SCT1 shows one far outlying signal for
0.3M NaCl (blue), which in this case is due to agglutinated label. In the corresponding image
(below), the bright dots of unspecifically bound label are common to radioactively labeled
targets, whereas the most severe outliers among multichannel data are frequently caused
by highly flourescent dust (not shown). The ordinate shows arbitrary (machine dependent)

intensity units.

For this reason, a thorough preprocessing is essential. Different normalization algorithms
are applied to single and multichannel data for the different meaning of the particular raw

intensities. Intensity-, ratio-, and reproducibility filters are applied to extract genes of marked
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expression for both types of data.

Genes with generally low reproducibility for most of the conditions under study are filtered
out by the reproducibility filter. However, with increasing numbers of conditions, discarding
all genes with low reproducibility in one of the conditions will leave no gene undiscarded. The
same is true for the intensity filter. It is therefore reasonable to use these filters to discard
only genes with low abundance or low reproducibility (often coinciding) in all the conditions
under study. Thus, outliers as shown above have to be handled by other measures. Otherwise,
they would seriously interfere with CA analysis, which in contrast to other methods is not
similarity-driven but aims at displaying variance. Any difference to the default state (expected
value) such as an outlier, will be regarded as important for the projection. The larger the

difference, the more distinctly the corresponding point will be plotted.

We prevent this by choosing the principal axes according to the condition medians only (HMS).

420~

9'0- 8'0-
T
- VO_
TIvo ®
LIVO®
i

v'0-

pa10idsp (£0T9 J0 IN0) Saush pa1ds e 1IS0W €/TT o
20—

URJIS 1Wweinw ayl ul Ajuo pare|nbaidn saues) :molke poy e
paonpuIuUN 7 poNpuUl ‘uels alusbuel) 'SPA 1SeeA |\ O

auabsuen a|gionpul asoloeeb :1Sea A

uonIpuod YyimoJd pue adAioush Jed suoiesipligAysaniedsl 01 O
20

[eo+ uabsuenn m

[e9- uabsuen
[eo+ 1M m
[eo-1M O

7’0
uelpaw uonipuod O

urens | M pue olusBsuel] Ul yiog asoide el Aq paenbaidn ssusb :molke Yoe|lg e
910410 Yoe|q Ag paxfew UOITESIPLIGAY , Se UMeIp UoNIPUOD JO Uelpaw asimausl o

(10102 1yb1| / 4ep) uonesIpLGAY , aTesedss Se umelp jesiods Ydes Bumods aignod o

Let me first introduce a new data example. Here, a transgene was transfected into yeast cells

under the control of a galactose inducible promoter:

Red empty boxes are WT yeast without galactose in the medium, blue WT with galactose,

green the transgenic strain without galactose and pink transgenic with galactose and here we
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would expect the transgene to be induced and genes that follow the transgene. The aim was
to separate those genes from all the genes which are upregulated by galactose in yeast anyway,
that is: also in the WT strain.

The bisection line between WT and transgenic strain with galactose (black arrow) points to
the genes induced by galactose both in the transgenic and in the WT strain. There we find
genes like Gal 7 and Gal 1. The red arrow points to the genes upregulated specifically only
in the transgenic strain - those are the genes the experimenter intended to look at with this

experiment.

T
WT Gal
WT +Gal
1ranegen -Gal
ransgen +Gal

condilien median H}'bl’ldlzallon-medlan-deiefmined scaling (HMS):

7 Axes are choosen according to the condition medians onl

All "other” (real) hybridizations are plotted as points
"without mass’
-» visualizing the variance (reproducibility)

amony the hybridizations

Cmmmal|

E
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Typically, replicate hybridizations are performed for each condition under study leading to
several values for one gene/condition pair. The number of such repeated hybridizations is
often small. I therefore represent these values by their gene-wise median rather than their
gene-wise average because the median is less sensitive to outliers. The need remains, though,
to visualize also the original data and not only the median since they contain valuable informa-
tion about experimental variance and quality of individual hybridizations. In fact, CA offers
the possibility to reflect both aspects. To this end, CA is first effected by using the gene-wise
medians, determining the coordinate system to embed the original hybridization intensities.

These data points are then referred to as supplementary points or points without mass. Thus
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the share of noise belonging to an experimental condition is shown by the spread of its hy-
bridizations around the median. As the dimensions of the data are reduced by using medians
of hybridizations per experimental condition, I refer to this strategy as hybridization-median
determined scaling (HMS).

The embedding for hybridizations without mass is computed as follows. Let the matrix N
contain only the hybridization medians and let N* of elements nj; be the original data matrix
containing all the hybridizations. N is submitted to CA. Let P* have elements pj;, = nf; /n} .
The principal coordinates for the supplementary hybridizations from correspondence matrix

P* are then calculated as

1 prj/fz‘k

o
9 =

In our own data sets, a single hybridization consists of two corresponding spot sets because each
c¢DNA had been spotted twice on the array. I refer to these spot sets as primary and secondary
spots. They tend to show a higher correlation than hybridizations belonging to the same
experimental condition. Plotting them separately (duplicating the number of supplementary
points) provides an atomic unit of distance in the biplot, where no units are assigned to the

axes.

Projection methods generally aim at explaining the major trends in the data while at the same
time ignoring minor fluctuations. HMS has been demonstrated to further enhance this effect
(Fellenberg et al., attached).
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Due to all these precautions and given a sufficient number of repeated hybridizations, the vari-
ance explained by a CA plot will largely reflect biological changes, displaying the significance
of differences both among the genes and among the hybridizations in terms of the y2-statistic.
The power of the CA technique however is that it is able to show associations between genes
and hybridizations. To fully exploit this property, it is necessary to examine the exact direc-
tions of gene-association with the experimental conditions. These are given by the standard
coordinates of the according condition medians rather than by their principle coordinates. An
experiments represented in standard coordinates can be viewed as a virtual gene having its
entire mass (intensity) in this particular experiment. Thus, it is the gene of highest possible
association with this experiment, able to “represent” the experiment in “gene-space”. Plotting
the standard coordinates directly would cause all principle coordinates to shrink into a small
area in the middle of the plot. The introduction of lines representing the standard coordinates
is of great help in the interpretation of the plots, relating genes and conditions to each other

and circumventing direct plotting.
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Adapting CA to microarray data

particular requirements solutions

hybridizations show differential log-linear regression
background, label-incorporation, ...

ratios of low-level intensities
are not reliable

stabilize by additive shift

_>
— intensity filtering

noise, systematic errors — reproducibility filtering

low numbers of repeated — adapted reproducibility measure
measurements — visualization of all measurements
frequently occuring outliers — choosing axes according to

medians of each condition (HMS)

It is equally important to tackle the problem of unduly high ratios in the low intensity region.
As already mentioned, only those genes are filtered out that are low in every condition under
study. To lower the impact of low intensities on the intensity ratios, the normalization method

described in

e T. Beissbarth, et al. Processing and quolity control of DNA array hybridization data.
Bioinformatics, 16:1014-1022,2000.

has been modified, additively shifting the normalized matrix back to its original expression
level. To exemplify the benefit of simply adding a certain number to all of the values, consider

that a shift from 0.02 to 0.04 resembles upregulation by factor 2, whereas a change from

1000.02 to 1000.04 does not.

Above transperancy summarizes all the discussed measures adapting CA to the particular

requirements of microarray data.
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* SIC1, known to be accumulatad in a Cdci4p dependent fashion [1]

* £TS1, belongs to the cluster of SIC1 co-regulated genes [2]

* RME1, CRH1, PST1 known to be cell-cycle requlated with peaks in mitosis/G1 transition, G1 or late G1, respectively
but have not yet been described in association with Cdc14p activity.

* YBRO71W, PIR1, YGRO8GC, YLR194C, YFLOOG not yet annotated to be cell-cycle regulated but in agreement with
the data of ref. 2 {mitosis/G1 transition)

® GLE2 (nuclear pore protein): ? unknown function in Cdci4p activation context

[1)D. O. Morgan. Regulation of the APC and the exit from mitosis. Nat. Cell Biol , 1{2):E47-53, 1999,
[2JP. T. Speliman et al. Comprehensive dentification of cell cycle-regulated genes of the yeast[..). Mol. Biol. Call, 9:3273-3297, 1988,

Some Biology: Genes in the direction of galactose induced transgenic yeast are those specifi-
cally upregulated upon CDC1/ induction as opposed to genes activated by galactose also in
the WT strain, like GAL1 and GAL7. This subtraction has been achieved purely computa-
tionally and is based on the provision of galactose activated genes in wild type as a separate
condition. The set of genes associated specifically to the Cdcl4p overproducing condition
comprises CDC1/ itself as well as SICI, known to be accumulated in a Cdcl4p dependent
fashion [1] and CTSI which belongs to the cluster of SICI co-regulated genes [2]. RMEI,
CRH1 and PST1 are known to be cell cycle regulated with peaks in mitosis/G1 transition,
G1 or late G1, respectively but have not yet been described in association with Cdcl4p activ-
ity. YBRO71W, PIR1, YGR0S86C, YLR194C, and YFLOO6W have not been annotated to be
cell cycle regulated, but these results show that they are. This is in agreement with the data
of Spellman et al. (right panel, genes marked by red circles), which also show these genes to
be transcribed during mitosis/G1 transition. The role of the nuclear pore protein GLE2 in a

Cdcl4p activation context remains unclear.
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The biological context of CDC14 is sketched in the following transperancy.
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The last data example relates to the second part of the talk. A time course has been recorded

for wild type S. cerevisiae cells under oxidative stress. The thin black arrow draws the chrono-

logical progression of the experiment. The cells responding to 0.2mM hydrogenperoxide in their

medium show quite a leap in expression behaviour between 15 and 20 minutes that includes
31



the downregulation of genes which had been switched on in the initial phase of the response.
Four of those are flagged. Their gene profiles are plotted below. They are switched on initially

and are being downregulated somewhere between 15 and 20 minutes.
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In the above example there is obviously something wrong. It is exactly the same
experimental setting as before but now the yellow 30" condition is divided into two clusters

located far away from each other and distorting the nice picture of the previous plot.

And we want to know why. What is wrong with the outliers? In other words: Can we
find features in the experimental description which are characteristic for the outlying cluster?
Are there annotation values overrepresented in the cluster? Or are there values missing or

underrepresented in the cluster?
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Data Warehousing

To enable interpretation of large data sets, the data produced need to be stored in a suitable
way to allow for global comparison [3]. For rapid and simple access, data should be stored in
common format, e.g. in a database, rather than in unequally structured flat files. Database
repositories provide the convenience of consistent view, defined interfaces and increased access
performance. Build-in methods for multiuser operation as well as a centralized administration

enable high standards for data security in addition.

The advantages of standardized storage apply not only to the signal intensities for each item
in an array but also to all available descriptions of the sample from which the RNA has been

derived, and all details of its treatment.

Several database projects are currently addressing these questions. While ExpressDB (Har-
vard, [I]) aims at storing data from nearly all available platforms, i.e. ¢cDNA and oligonu-
cleotide chips as well as SAGE (serial analysis of gene expression), a different focus has been
to develop systems for consistent description of the samples used and the genes mounted on
the array, e.g. in GeneXf] (NCGR), GEO[] (NCBI), ArrayDB (NHGRI, [13]), ArrayExpress
(EBI, [6]), and RADP(UPenn, [25]), the last one combining both objectives.

3http://www.ncgr.org/research /genex/
4http://www.ncbi.nlm.nih.gov/geo/
Shttp://www.cbil.upenn.edu/RAD2
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Data upload. Along with the transcription intensities, experiment annotations have to be
stored. These should explicitely characterize the sample and its treatment, RNA preparation

and labeling steps, hybridization and washing as well as the imaging process in sufficient detail.

Arabidopsis experiment annotation:
see http://www.dkfz-heidelberg.de/tbi/services/mchips/arabidopsis.html

(11 other organisms at
http:/ /www.dkfz-heidelberg.de/tbi/services/mchips/#annos)

Experiment annotations may comprise, among other things, the description of environmental
conditions, genotypes, clinical data, type of tissue, estimated degree of contamination by
other cell types, or the sampling method. Annotations related to the hybridization protocol,
properties of the individual array or imaging process are also included. Because both sample
biology and experimental settings (protocols) are complex, the list of parameters to account
for is too large to be investigated by eye even for small sets of hybridizations. Because visual

inspection is impossible, automatic (computer based) analysis is needed.
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What is characteristic for the outlying hybridisations ?

In practise: Selecting these outliers, scanning for at least 2-fold over-or underrepresented
annotation values results in values belonging to only 8 out of 111 annotations, listed in the

next transperancy.

35



0 Ul Z/0) WUesge SI GaneA
9 Ul Z/0) Jussge S| anfeA
0 Ul Z/0) WUesge S| € aneA
9 Ul Z/0) Juesge S1 Z anfeA
0 Ul Z/0) WUesge s! T aneA

salies Aelle iz uolrIoULR
RB1snp uonesipugAy

(101 Ul PT/2 - JBIBND UL Z/0) WSS S1 0Z SN feA
(fe301 U1 T/ : BISN[D U1 Z/0) USSR S| ST BN eA
(/301 U1 T/ : BN U1 Z/0) USSR S| OT 8N
(BI01UI T/ © SN Ul Z/0) JUSSTe SI G aNneA
poried uoIeqnoul :GGOT UoIRIoUUR
Joeusw LiedXe 6E uoielouUR

(fe303 Ul #T/T : JISNIO Ul Z/0) JUSSTR S1 9 AN e
(fe101 Ul PT/T : IS U1 Z/0) JUSSTR SI G 3N eA
uoITesIpUgAY Aelle ;/ uoieIOUUR
[enpIAIpUl Aelle S uolTeIouLR

aAnIppe Arlodwe) :£G0T UoIrIOUUR

(101Ul YT/ - JISN
(101U PT/2 : JOISN
(101U HT/2 - JBISN
(e101UI PT/2 : JOISN

(101Ul PT/Z : JOISN
1O} Ul $T/2T © 1SN Ul Z/0) USSe SI T9 aneA

(101 U1 PT/2 © 1SN U1 2/0) 1USSCR S18U0U €ZTT aNfeA
210} U1 YT/2 © BISNP U1 Z/2) POIUBsIdoLIBA0 X/ S1 6G N eA

(101 U1 PT/2 : JOISN| UI Z/0) JUesTe S| niseq 70T anfeA
(101Ul PT/2 : JOISND Ul Z/2) PelUasaIdelon0 X/ S1 g anfeA

:peUasaIdaLBpUN/IBAO XZ A19eXS 10 Ueyl 90N

(fe101 Ul YT/ : BIBNIO Ul Z/2) PRIUSSSIdBLIBAO XG'E S1 OE AN eA

Bu1AINo ay1 JoJ 21 1BITRIRYD SUOIRIOULR Z/ JO IN0 9 SPRIA
'SUOITRIoULR [RIUBWI LIBAXS JO SIBAeUe JIeWwoINY

These annotations are possible candidates to explain the cluster formation. Some can be
excluded when considering their meaning in the experimental context. The annotation ‘in-
cubation period’ records the time points, and ‘temporary additive’ describes whether or not
hydrogen peroxide was present in the growth medium, both only reflecting that the selected

measurements belong to the 30 min timepoint.

‘Label incorporation rate’ and ‘total activity’ of incorporated label can be also disregarded for
characterization of the cluster, because values annotated for the measurements in the cluster

show up in mid-range for both annotations in the list.

The absence in the cluster of a particular ‘experimentator’, who performed two out of the
twelve measurements outside the cluster is unlikely to explain the difference between cluster
and other measurements. The same applies to not rehybridizing the array for the 5th or 6th

time (annotation ‘array_hybridization’).

The first two annotations listed mean that the entire cluster was hybridized on ‘array individ-
ual’ 6 which is the only one stemming from ‘array series’ (i.e. production batch) 59, whereas
all other arrays were from series 61. From other experiments, sufficient comparability among

arrays of the same production series has been observed, whereas arrays of different batches
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could not be directly compared. The differential array batch used for hybridization in the
selected measurements causes their profiles to be different. The CA plot shows them clearly
separated not only from the remaining measurements of the 30 minutes timepoint but also
from all other measurements. This artifact distorts the projection of an otherwise sound and
revealing dataset - omitting the two outlying measurements for analysis results in the sound

and revealing CA plot on the last but one transperancy of the CA part.
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How to obtain such a list? Instead of using the y2-test statistic to determine, which annotation
values are characteristic, let’s consider a simple way to access these associations. Consider the
yeast specific enumeration-type annotation ‘growth phase’ that can take 3 different values,
namely ‘exponential’, ‘stationary’ or ‘pseudo-hyphal’. The corresponding hybridization data
points are drawn as rectangles, hexagons and triangles, respectively. Focusing on the triangles,

one can count their frequency in the encircled hybridization cluster, which is % (5 out of 10)

as well as in the entire set (4% = %) Dividing the first by the second frequency suggests a
3-fold over-representation of the value ‘pseudo-hyphal’ in the selected cluster. In the same
manner, all values of all annotations can be scanned for being characteristic, i.e. over- or

underrepresented in a hybridization cluster, thus enabling automated analysis of large and
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complex data sets. The resulting (characteristic) experimental parameters are candidates for
explaining the cluster formation, i.e. they are candidates for being the active players which

drive the cells to the observed transcriptional state.

Simple as it may be, this method already provides good analytical access to long lists of anno-
tations and huge sets of hybridizations, which could hardly be evaluated by visual inspection.
While this is a simple and easy to explain way to do so, statistical tests would certainly better
suit this task. However, any statistical analysis will require that the variables (annotations)
are of categorical range and that instances of occurance can be counted for any annotated

value:

Free text annotation:
e misspellings
e meaning of words depend on context

e different researchers use different words to
represent the same item

interfere with counting such values'!

Misspellings, different textual representations of semantically identical items, and, vice versa,
ambiguous words whose meaning depends on the context, interfere with counting such values.
With these limitations to access for computer based, i.e. statistical, analysis, global studies of

large data sets will not be possible.

38



@ assigning defined values by
big effort
. recovering a share of the ol
Free text annotation percentage may be low
or
@ datacemetery

-->|oss of information

Defined values @ instances of occurance
are countable

--> 100% information accessible

Statistical Accessto Experiment Annotations

PROBLEM: Valuesare not directly countablein freetext annotation
solution 1 solution 2 solution 3
pattern matching few freetext fields no freetext at all

Instead of tolerating free text annotation in addition to a greater or smaller share of “controlled

vocabulary”, we do without any freetext.
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While in free text descriptions the number of occurences of a value is not directly countable,
dispensing with free text also causes problems. An arbitrary-length free text field allows to
annotate each possible value and may also take any number of such atomic pieces of informa-
tion. In contrast, the type of annotation described above is restricted to predefined values.
New annotations and/or new values for existing annotations have to be added constantly as
new experiments are designed. This requires the ability to define new annotations rapidly
without altering the database scheme, i.e. during normal database operation. The absence
of highly flexible free text annotations has to be compensated for by increased flexibility in

database storage.
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Database model

Object-oriented Relational
good for for
e complex data sets * simple-structured data
* with numerous relations * easy access automation
between stored entities data portation,

db administration

In principle, a microarray database could be either object-oriented or relational. The object-
oriented model is chosen for complex data sets where numerous relations exist between the
stored entities. In contrast, relational databases are convenient for simple-structured data and
easy to handle with respect to access automation, data portation, and database administration.
A microarray database will consist mostly (more than 99% of storage space in our databases)
of intensity data which can be perfectly stored in tables and show few relations to other items.
I therefore decided to focus on the relational rather than the object oriented model due to the

simplicity and good portability among different database management systems (DBMS).

A relational database consists of
e relations, also called tables. Such a table relates between

e attributes also referred to as data fields or columns of such a table and may contain

an arbitrary number of
e tuples, also termed records or datasets, which are represented as the rows of a table.

In addition to ‘table’, ‘column’, and ‘row’, I will frequently use the formal relational terms

relation, attribute, and tuple, respectively.
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Given the tool of a relational DBMS, storage of e.g. experiment annotations can be imple-

mented in different ways.

Structured (nested )

HIERARCHY of annotations

DB structure
("hard wired')

by STRUCTURE

annotations stored as attributes

(= columns, fields)

may be implemented
by

CONTENT of

adefinition table

by CONTENT

... stored in table content

IS

O

E DEFINITIONS

s

& | array_source array_support | spotted_material annotation defined value

1 | self made nylon PCR array_source self_made

) | | bCR array_source genome_systems

genome_systems| polypropylene array_support glass

3 | self_made glas colonies array_support nylon
array_support polypropylene
spotted_material colonies
spotted_material PCR

c

(0]

E ANNOTATIONS

3

x .

@ | annotation value
array_source self_made
array_support nylon
spotted_material | PCR

2 | array_source genome_systems

The parameter names such as “array source”, let us refer to them as “annotations”, may
become the attributes (column names) of a single table. Another possibility is to make them
the content (the tuples) of a first table, whose only purpose is to define the annotations along
with the values they may take. Here, a second table is needed to store the actual values taken

in particular experiments.
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The increase in redundancy - annotations only take a tiny share of the storage space anyway -
is more than compensated for by the increase in flexibility. New items can be inserted without

changing the database structure nor any algorithm operating on it.
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Thus, a “by content” - implementation deals with the complexity e.g. of experiment annota-
tions already at the database level. It provides a standardized platform for algorithms (which

may be complex enough without that task).
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DEFI NI TI ONS
annot at i onheadi ngs

heading1no|headingl |heading2no|heading2 |heading3no|heading3
1|common_annotations 1larray | 1=
1|common_annotations 2|hybridisation 2|RNA_preparation
1|common_annotations 2|hybridisation 3|labeling
1|common_annotations 2|hybridisation 4]|hybridisation_conditions
1|common_annotations 2|hybridisation 5|stringency_wash
1|common_annotations 2|hybridisation 6|detection
1|common_annotations 3|sample | 7=
organism_specific_annotation: 4|genotype 8|-
organism_specific_annotation: 4|genotype 9|-
organism_specific_annotation: 4|genotype 10|auxotrophic_marker
organism_specific_annotations 5|growth_conditions| 11
2|organism_specific_annotations| 6[medium -
2|organism_specific_annotations 6|medium 13|C_source
2|organism_specific_annotations| 6/medium 14|additive
(14 rows)
annot at1 ons
lastheadingno|ano|nextano|annotation |vno|nextvno|value
1| 1 2|array_source 10| 11self_made
1| 1 2|array_source 11| 12|genome_systems
1| 1 2|array_source 12|  13|clontech
1| 1 2|array_source 13|  14|research_genetics
1| 2 3larray_series o 0|
1l 3 4larray_individual o 0
1| 4 5larray_support 14|  15|nylon
1| 4 5|array_support 15| 16|polypropylene
1| 4 5|array_support 16 17|glass
1| 5 6|spotted_material 17 18|PCR
1| 5 6|spotted_material 18| 19|colonies
13| 50| 51|galactose | O]  O|[%]
13| 51| 52|ethanol | 0 0|[%
13|52 53|glycerol | O]  Ol[%]
14| 53| 54|temporary_additive 121] 122|H202
14| 53| 54|temporary_additive 122 123|NaCl
14|53 54|temporary_additive 123| -1]none
14| 54| 55|concentration | 0 0O|[mM]
14| 55| -1lincubation_period | 0] |[min]
49|base |118] 120|SDC

12| 48,
(135 rows)

In practise, the definition table may be supplemented by another table storing a hierarchy. This
one has 3 columns taking sections, subsections and subsubsections. Independent of the nesting
depth, the numbering of the so-to-speak “smallest” (last) headings relates to the attribute
lastheadingno in the annotations table, thus connecting the two tables.The attributes ‘ano’
and ‘vno’ are used as IDs to reference annotations or their values, respectively. The attributes
‘nextano’ and ‘nextvno’ point to the next entry, thus implementing a linked-list structure.
Values that contain square brackets are not necessarily categorical but are meant to take a
number, e.g. a production batch ID. If a unit can be defined for the value, it will be listed
within the brackets.
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annotations constant in multi-conditional experiment:

common_annotations

array

1 —array_source

2 —awray_series |[51

3 —awvay individual ||

4 —awray_support 14 - nylon =
5 —spotted material 17 - PCR =]
6 —readfile |

7 —array_hybridisation *** repetition — dependent ***

10 — self made =

hybridisation

RNA_preparation

§ — material_sowrce 22 - frozen =1
9 — preparation_of_total RNA 24 - trizo] = _
10 - preparation_of_PolyA+ 27 —none = _

labeling

PP o P

The content of these definition tables serves as meta data to compile html forms used during

the process of annotating an experiment.
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contral | 7 beonimine g coraman s e

hybridisation 1

7 - array_hybridisation ||
1046 - temperature || deg.C
16 - label_incorporation_rate || %

17 - total _activity || cpm

control

% 2 Intemet (4 Lookup (4 New&Cool £ Net| Bk

1055 — incubation_period || min
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annotations constant in multi-conditional experiment:

hybridisation 2

7 - array_hybridisation |
1046 - temperature || deg.C
16 - label _incorporation_rate || %

1055 ~ incubation_period || min
17 — total _activity || cpm =

condition 1

array

condition 1 condition 2

hybridisation 1 1046 - temperatare || deg.C
7 - array_hybridisation || -
1055 — incubation_period | min
16 - label_incorporation rate ] %

17 - total_activity |{ cpm condition 3

‘hybridisation 2 1046 ~ temperature || deg.C
7 - array_hjbridisation 1055 - incubation_period || min

.
condition 4

T

/(\\\\

Definitions Annotations for | o 1o otion and separate
Annotation MCE 10 annotation of measurement-/
"headings’ condition-dependent and

MCE 11 constant annotations
® copy defaults from
. MCE 12
Mﬁyoﬁ:o: a similar MCE
efinitions e
i —— MCE 13 ® cdit differences
e

7 -aray e pendent  xx

hybridisation

RNA _preparation

§ - matexial_source 2 -frozen o

9 - preparation_of_total RNA

10 - preparation_of PolyA+ = 27-none =

labeling

24 - trizol =l

A convenient way minimizing efforts in annotation. Every piece of information has to be en-

tered only once. The annotation process may start with copying default values from the most
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similar multiconditional experiment (MCE). Secondly, from the complete list of defined anno-

tations the measurement-dependent ones (those taking different values for each hybridization

or channel such as ‘label_incorporation_rate’) are selected and then annotated for each single

measurement. Afterwards, from the remaining annotations, those being condition-dependent

(taking different values for each experimental condition under study) for the particular experi-

ment are chosen and annotated for each experimental condition. For the constant annotations,

it suffices to edit few, if the questionaire is prefilled with default values copied from a similar

experiment.

experimental annotations: annotated wvalues

vl constant_categorical 1

| |
|||||||||| e T e L T e e
1| 10|preparation_of_Polyk+ | 27 |none
1| 30|background_correction | 6% |none
1| 1Z|enzym | 31|superscript
1| 31|spot_detection | 74|all_spots
1| 13 |priming | 35|anchored_oligo_dT
1| 3Z|spot_siz=e | 76| fixed
1| 14 |nucle=otide | 38|dCTP
1| 33 |iptensity_measurement | 79 |sum _of pixels_within_boundary
1| 15|label | 40]33D

(33 rows)

¥l constant number 1

experiment | ano |annetakticn |vno|wvalue
|||||||||| Rt e T L e S
1| 20|hybridisation_temp | o] 65
1l| 21l |buffer_wolume | o] 3
1| 2Z|hybridisation_length]| ol 16
1| 24 |times | o) 2
1| 25|wash_length | o] 30
1| 26|temperature | 0] 65
1| 27|exposure_time | o] T2
1| 46|temperature | o] 30
1| 49 |glucoses | 0] 2
1| Z|array_series | o] 53
(17rows)
¥l conditiondependent 1
experiment |condition|anc|annotation |vno|cvalue |nvalue
|||||||||| B e e e S
1] 5| 55|incubation_peried| D]*** | 50
1 0| 3larray individual | D|*** | 3
1 1| 3larray_individuoal | 0]*** | 1
1 2| 3|array_indiwvidual | 0]**% | 5
1 3| 3larray_indiwidual | D|*** | 6
1] 4] 3|larray_indiwvidual | Of*+* | 7
1] 5| 3|array individual | D] *** | 8
1] 0| 55|incubation_period| O #** | ol
(12 rows)
vyl measurementdependent 1
experiment |condition|measurement |anc|annotation |vono|cvalue| nwalue
1] 5 2| 16|1labsl_incorsoration_rata| O]+ | 70
1] 4] 3| l&|label_incorsoration_rate| 0Of+#*+ | 0
1] 5] 2] 17|total_activity | o]*++ |loo00000
1] 4] 3] 17| total_actiwity | Q>+ | 10000000
1] aj 1| 7larray_hybridisation | Op**+ | 2
1] 1] 1] T|array_hybridisation | Of*#*+ | 2
1] aj 2| 7larray_hybridi=ation | Q>+ | 3
1] 2] 1| 7larray_hybridi=ation | O]**+ | 2

(51 rows)

While the contents of the definition tables are used as meta data by the web-based user

interface to compile multiple-choice forms, the results of the annotation process are stored

in annotation tables. These tables take the annotations along with their values taken for a

particular MCE, condition or measurement.
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spotlocations
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intensities
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cond. 2 MCE 1

47

definition of
exp. annotations

1. enumeration type

2. number (float)

MCE key
J——

of measurements showing a particular expression pattern.

exp. annotations

MCE 1

MCE 2

key

Above transperancy shows them (lower right boxes) in database context. Gene annotations,
signal intensities (please note the percentage!), and experiment annotations are displayed in
blue, yellow and red, respectively, also in the next transperancy. The gene annotations are
linked both with the transcription intensities and with public external gene databases (e.g.
GO) in order to enable explicit characterization of genes showing a particualar transcription
behaviour. The intensities are stored as measurements. A measurement (i.e. a hybridization
for radioactive or a single channel for multi-channel data) comprises a single value for each
spot on the microarray. Experiment schemes record for each measurement which hybridization
and experimental condition it belongs to, and which multiconditional experiment (MCE) this
condition is contained in. The experiment schemes are the ‘storekeepers’ of the database,

relating intensity data with experiment annotations, which allow for explicit characterization
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This scheme takes over arrangement and color code of the overview, dissolving it into database
relations and their attributes. According to the Unified Modeling Language (UML) specifica-
tionsf] of the Object Management Group (OMG), a database relation - in the world of objects
represented by a so called ‘class’ - is depicted as a box containing its name and, separated
by a horizontal line, its attributes. Building on the Entity-Relationship-Model (ERM) of P.

Chen [9], relationships between these relations (or classes) can be of three different kinds:

e 1-to-1 relationships are depicted as ‘1—1’. Each tuple (i.e. entry) of relation A corre-

sponds to exactly one tuple stored in relation B.

e Many-to-1 relationships, drawn ‘1..*—1’, indicate that each entry in B may correspond

to more than one entry in A.

e Many-to-many relationships are resolved by a connecting intermediate relation (e.g. the

green table in the center of the diagram).

Table inheritance - on a more abstract level represented by a generalized relationship of a
subclass sharing the structure or behaviour of a superclass - is indicated by arrows. In M-
CHIPS, all child tables have exactly the same structure as their parents (rather than showing
additional attributes). The attributes of these child tables have been omitted in the diagram

for visual clarity. For the same reason, tables of identical structure overlap.

Shttp://www.omg.org/technology /documents/formal /uml.htm
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S. cerevisiae Arabidopsis

Candida albicans

shared:
@ database structure
@ analysis algorithms

@ sct of ' COMMON'’
annotation definitions

individual:

@ own database

@ set of array 'families
(equal set of clones)

® ' ORGANISM-SPECIFIC’
annotation definitions

mouse

Human tumor .
Oi : Trypanosoma brucei
lopsies

Neurospora crassa

Each field of research is represented by an individual database containing a set of array ‘fami-
lies’ (each standing for a particular kind of array with a certain spotting scheme). The field of
research is represented by a particular set of ‘organism-specific’ annotation definitions (com-
prising e.g. medium components for yeast or tumor stage for human tumor samples). All
these databases share the same structure and can therefore be handled and analyzed by the
same algorithms. There is also a set of ‘common’ annotation definitions, i.e. those used by all

users (e.g. label incorporation rate).
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hybridisation

RNA_preparation

8 - material_source 21 - fresh
9- preparation_of total RNA 24 - trizol

10 - preparation_of_PolyA+ 27 - none

labeling

11 - amount_of RNA microgram
40 - amount_of cDNA microgram
12 - enzym 31 - superscript

13- priming 34 - oligo_dT

14 - nucleotide 38 - dCTP

markers_transposons_tags

3113 - active_transposon 3098 - no_transposon

growth_conditions
3107 - experimentator_growth_conditions 3091 - schlaich
field

3052 - begin_after_germination d
3053 - end_after_germination d
3054 - soil 3032 - loamy

greenhouse

3055 - begin_after_germination d

These common annotations are related to the microarray technique, describing the array, RNA
preparation, labelling, hybridization and washing conditions and signal detection. The second

half of the list consists of organism-specific annotations.
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An important issue for implementing and running a database is data integrity also called
data consistency. Suppose a valid alteration of the data, defined by a block of sequentially
performed operations (such a block is called a ’transaction’) breaks down after doing half of
the work. A table could have been deleted but remains registered in the table administrating
system catalogue of the database system. Another example may be the task to add 500 Euro
to everyone’s salary in a table containing employees and now it is unknown which row was
updated and which not. In both cases data integrity (database consistency) is violated. To
prevent damage, the DBMS should be transaction-based. In above cases, the whole transaction
will undergo a “rollback” upon occurance of the error, i.e. the database will be put back to the
state before the start of the transaction. Furthermore it is important to prevent unauthorized
access and to have at hand both global and partial backups to restore the complete system or

accidentally deleted experiments, respectively.

52



souewoped o

191 fedas
unumise) o

SISATTVNVSpEMOL o

‘6 ‘sawin JueJe4Ip e Joy
:90eds Anb BuiziwuiN e

'S9Sea10U | S3|ge) JO Jequunu
Se UMOp paMOs a1e salienb 1ng ‘ssjgel aibuls
payo.ess Aewlou sa|dny Jo) afe.ols apeledas

Se paep / Uenum Apjoinb ase suoirezipugiH
SS30Je Peal BIUOD 319 PP /B1LUAN e

© 10} S9J03S UoIeljouue 1S 1eldereyd
:2/o Ag pauiwexs aq 01 aneY 1,uUse0p adeds
uoIrelouUe W Liedxe xo|dwod pueabe] e
»o0(|q abre|e wouy Bulpeal e} o
9|
P/
S1011U02 rURIX ‘s1ods Aidwie ‘soush

¥I1138snowl Aq paeanal Jesn|o uoirzipugAy
se suoneziplgAy Bunsp

While the tables containing the gene annotations have only as many tuples (table rows) as
there are genes, transcription intensities add up to this number of entries for each single mea-
surement. Gene and experiment annotations on average only take 0.35% of the storage space.
Since this amount is far too small to be relevant for query performance, flexibility remains the
only time-saving aspect related to experiment annotations. Performance considerations are
related only to the hybridization intensities. Among all intensities, analysis focuses on spots
that represent genes as opposed to empty spots and various kinds of controls. For this reason

we use different tables to store these kinds of intensities, thus minimizing query space.

Having stored intensities and background for genes, empty spots and different categories of
controls, fast querying of tuples for all these categories is mediated by so-called indices, which
immediately guide the search to the specified tuples. If all measurements were stored in
one large table per category, adding a new measurement would be slow because of the time
necessary for recomputing the indices. Therefore, new measurements are inserted as separate

tables, computing indices only for the new tuples.

However, database search is slowed down by increasing the number of separate tables because
there is no global index immediately guiding the search to the table containing the tuples.
Although high performance for write/delete operations is achieved, read access is slow for a
large number of separate tables. In order to optimize both writing and reading operations, we

write or delete measurements as separate tables, but read from large ‘block’ tables that are
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filled by over-night jobs collecting measurements that are no longer to be altered or deleted.
Thus, computation of large indices is performed at times of low traffic as an investment in
query performance. Table inheritance is used as an elegant aid in keeping track of both single
and block tables. Since each access to the intensity tables is directed via one of the parental
tables, query syntax does not change when a set of tables is merged into one block. This block
will be a child of a specific parental table as are the tables to be merged (UML scheme, small
yellow tables). Thus the event takes place at the underlying database level, being completely

insulated from the level of accessing algorithms for reduced complexity.

The only access property changed by this process is query speed. On a SUN E450 server under
Solaris 2.7, a PostgreSQL 6.5.3 server process retrieves two consecutively uploaded hybridiza-
tions (comprising 6103 yeast genes in double spotting) out of 686 stored in separate tables on
average in 85 seconds. The same query performs in 2.3 seconds, if the 686 hybridizations are
assembled into one large table. Even retrieving two out of 2251 hybridizations takes only 2.8

seconds when all hybridizations are en bloc.

Summary
Microarray Database ac h | evemen tS :
e > 3000 hybridizations of 11 different fields of research
e in @ common data format
= statistical access also to experiment anntotations

advantages:

e integrated visualization of genes and hybridizations

e visualizes intricate details such as subtle deviations
of objects from the expected state

e is explorative

Correspondence analysis

achievements:

e adaption to the requirements of microarray data
(normalization, filtering, HMS)

e integrated analysis of experiment annotations

This last transperancy summarizes the achievements we made with correspondence analysis

ontop a customized data warehouse solution.
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More information / references

e Further information incl. a detailed description our storage scheme,
o free-text free experiment annotation definitions for 11 different organisms, and

e public data (recently 292 public hybridizations)

can be obtained at http://www.dkfz-heidelberg.de/tbi/services/mchips.
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