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Abbreviations

’ - minutes

AI - artificial intelligence

ANN - artificial neural network

BLOB - binary large object

CA - correspondence analysis

CART - classification and regression trees

CAST - clustering affinity search technique

cDNA - complementary DNA

CGI - common gateway interface

CLICK - cluster identification via connectivity kernels

cond. - (experimental) condition

DBMS - database management system

DNA - deoxyribonucleic acid

EBI - European Bioinformatics Institute

ERM - entity-relationship model

EST - expressed sequence tag

exp. - experiment

GO - gene ontology

HMS - hybridization-median-determined scaling

HTML - hypertext markup language

ID - identifier

ISIS - identifying splits with clear separation

LIMS - laboratory information management system
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MCE - multiconditional experiment

M-CHIPS - multi-conditional hybridization intensity processing system

MDS - multidemensional scaling

meas. - measurement (here referring to a dataset that comprises one value per spot for each

spot on the array)

MIAME - minimal information about microarray experiments

min - minutes (also referred to by a ’ )

mRNA - messenger RNA

NBS DES - National Bureau of Standards (USA) Data Encryption Standard

OD - optical density

OMG - object management group

ORF - open reading frame

OS - operating system

PCA - principal component analysis

PKC - protein kinase C

REVEAL - reverse engineering algorithm

RNA - ribonucleic acid

SAGE - serial analysis of gene expression

SNP - single nucleotide polymorphisms

SQL - structured query language

tab - tabulator

UML - unified modeling language

WT - wild type

WWW - world wide web

XML - extensible markup language
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... in a nutshell

Microarray technology provides access to expression levels of thousands of genes at once,

producing large amounts of data. However, the data show a considerable level of noise, low-

level signal intensities are unreliable and datasets commonly comprise outliers. Moreover, a

gene set observed to have a certain expression profile of interest will contain a considerable

number of false-positives because of the large number of genes under study compared to the

small number of conditions. Therefore, in addition to the ability to make amenable both genes

and conditions, analysis has to meet certain requirements. It has to be capable of integrating

multiple repeat hybridizations for each experimental condition. In addition, the method has

to suppress noise and should not be distracted by outliers.

The talk presents a storage system as well as methods to study interdependencies among large-

scale microarray data. I applied correspondence analysis as an explorative statistical tool to

study interdependencies both between and among sets of variables, i.e. genes and hybridiza-

tions that result from expression profiling. Data are carefully preprocessed and correspondence

analysis is performed in a way that integrates replicated hybridizations, accounts for noise, and

circumvents outliers, thus adapting the method to the particular pitfalls of microarray data.

Correspondence analysis is a projection method. Much like principal component analysis it

displays a low dimensional projection of the data, e.g. into a plane. However, it does this for

two variables simultaneously revealing associations between them. To introduce the method,

I show its application to the well-known Saccharomyces cerevisiae cell-cycle synchronization

data of Spellman et al. (Mol. Biol. Cell 9 (1998), 3273-3297). Furthermore, correspondence

analysis has been applied to a non-time-series data set of our own, thus supporting its general

applicability to microarray data of different complexity, underlying structure and experimental

strategy (both two-channel fluorescence-tag and radioactive labeling).

Any method which is, like correspondence analysis, suitable for the analysis of hybridization

signals, is best used having access to a database holding the large datasets in a defined common

format, ready for preprocessing and analysis. However, it is not sufficient to provide this

platform only for hybridization intensities. It is equally necessary to supplement the intensity

data by information about genes that are represented by the array spots, and about the

experimental conditions for biological interpretation. For interpretation of large data sets,
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these annotation data should be in a format amenable to computer aided analysis because

they are too numerous for visual inspection. Including annotated experimental parameters into

statistical analysis offers the opportunity to identify the global players behind transcription

patterns.

Free-text annotations of recent microarray databases are not suited for direct statistical access.

Parameter sets used for experiment annotation still change continously, and standards only

comprise minimal conventions that do not enable extensive description. Complex and highly

diverse experimental settings cause a high complexity and diversity in experiment descriptions,

requiring also a higher flexibility in data storage than that achieved by standard database

solutions. This is true in particular when data are stored in a statistically accessible format

restricted to defined values. A structure which is independent of the particular parameter set

enables updates of annotation hierarchies during normal database operation without altering

the structure.

A system has been developed and implemented to meet the above requirements and to in-

tegrate correspondence analysis into a larger framework of data platform and supplemental

methods. It has been named M-CHIPS (Multi-Conditional Hybridization Intensity Processing

System). It allows for statistical data analysis of all of its components including the experi-

mental annotations. It addresses the rapid growth of the amount of hybridization data, more

detailed experimental descriptions, and new kinds of experiments in the future. Although

different organism-specific databases may contain different parameter sets for experiment an-

notation, they share the same structure and therefore can be accessed by the very same

statistical algorithms.
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Correspondence Analysis

labelled cDNA

       mRNA

gene 1
gene 2
gene 3
gene 4
gene 5
gene 6

12,154
 27,152

1,407
3,101

120,993

gene 8
gene 9

gene 7

...

14,243
 5,323

10,300
1,007

100,232

...

hybr. 1 hybr. 2 hybr. 3 hybr. 4 hybr. 7 hybr. 8 hybr. 9hybr. 6hybr. 5

condition 1 condition 2control condition

convert into numerical
values

...

cells growing under
specific conditions

immobilized DNA fragments

Intensity Table

hybridization

mRNA is prepared from cells growing under specific experimental conditions. It is labeled, i.e

converted to more stable cDNA by reverse transcription using radioactively or fluorescence-

tagged nucleotides and hybridized to an array. The scheme depicts only radioactive-label, i.e.

a single-channel setup for simplicity. The detected signals are then converted into numbers by

imaging software. I will refer to a set of conditions as a multi-conditional experiment when

all hybridizations are done with reference to one and the same control condition. Multiple

measurements for each condition, involving repeated sampling, labeling and hybridization,

offer the opportunity of extracting more robust signals. For the simple case of one channel per
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hybridization and with repeatedly performed hybridizations for each experimental condition,

I will call the individual data set a measurement and represent it by a separate column in the

table. One condition of a multi-conditional experiment can thus comprise several columns.

high quality signals

B
eissbarth et al. B

ioinform
atics, subm

itted

D
etailed description:

*)

Q
uality Filtering

*)

*)

E
xcluding signals w

ith low
 reproducibility utilizing

D
ealing w

ith filterw
ide additive and m

ultiplicative

N
orm

alisation

deviations betw
een hybridisations

norm
alised data

m
ultiple hybridisations for one condition

However, the intensity measurements in this table must not be taken at face value. Different

levels of background may result in additive offsets, or different amounts of mRNA or different

label incorporation rates may lead to multiplicative distortions among the measurements.

Therefore the columns of the table have to undergo a normalization procedure, correcting for

affine-linear transformation among the columns.
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One measurement is fitted versus a control measurement. The performance may be judged

from the scatterplot of the raw data (measurement versus control measurement). In this

plot, a regression line represents the multiplicative distortion (slope) and additive offset

(intersect) determined by the fitting algorithm. The performance of the fit is visible in how

well the regression line matches the central dense part of the cloud. Furthermore it can be

observed which properties of the raw data led to an eventually suboptimal result. The scale

of the plot can be switched between linear and double-logarithmic. In log scale, the

regression line appears as a curve whose curvature depends on the additive offset between

the two measurements.

In order to normalize a whole multiconditional experiment, the above step is iterated. All

measurements are iteratively normalized with respect to one and the same control condition,

such that they can be compared afterwards. M-CHIPS discriminates between mono- and

multichannel experiments, applying different control measurements and iteration steps. For

monochannel (e.g. radioactive) data, each measurement is normalized versus the genewise

median of the hybridizations for the control condition, resulting in absolute intensities. For

multichannel hybridizations, the channel belonging to the control condition serves to normalize

the other channel(s) of the same hybridization. Here, the normalized intensity values are not

analyzed as such, but result in intensity ratios, calculated immediately after normalization.

Normalization requires, that each hybridization comprises one channel obtained from the same

control condition.
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Filtering: Extraction of genes showing

• signal intensities clearly above the detection limit,

• significant relative change, and

• good reproducibility of this change

Subsequently it is advisable to disregard all genes which do not appear to be expressed under

any of the conditions, or the transcription values which do not reproducibly change between

the different conditions under study.

min/max separationsi
gn

al
 in

te
ns

ity

mean(x)

mean(x) − σ(x)

mean(o)

mean(o) + σ(o)

std separation

si
gn

al
 in

te
ns

ity

Distributions of repeated measurements are differential among the genes, depending on the

intensity level. Usually, there are not more than three to five values per gene and condition

6



available for averaging. Here they are denoted as circles and crosses for control and non-control

condition, respectively. I decided to rely on the minimal separation between two conditions

(minmax-separation). Positive minmax-separation is restricted to well-sorted arrangements of

the measurements of two conditions as shown in the left panel. Outliers as in the right panel

lead to a negative minmax-separation. Tim Beißbarth developed the idea of diminishing the

separation between the condition-means by one standard deviation (σ) of either condition set.

The standard-deviation separation is less restrictive which is preferable when higher numbers

of repeatedly performed measurements are available. In these cases it is desirable to tolerate

single outliers in otherwise well-sorted sets of measurements.

Given a thoroughly preprocessed data set one expects to be ready to tackle the biological

questions of data interpretation. However, filtering the genes by applying the above constraints

still results in large amounts of data. Typically, the so-to-speak “purified” table of signal

intensities comprises several hundred to several thousand genes. Some of them show similar

transcription profiles.
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pushes gene x and
gene y apart

pulls gene x and
gene y together

The degree of similarity may be measured by different metrics. Absolute or relative similarity

of the values may be taken into account. There may be genes showing very similar values in

some hybridizations while being differential in others.

A method frequently used for microarray data analysis is hierarchical clustering. It will result

in a tree of genes. It can be cut at different levels resulting in different amounts of clusters.
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The problem is symmetrical: The hybridizations show profiles across the genes ...

and may be hierarchically clustered as well.
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M
ethod

C
orrespondence A

nalysis

Principal C
om

ponents A
nalysis

M
ultidim

ensional Scaling

Planar em
bedding

B
aysian N

etw
orks

L
earning N

etw
orks

D
irected graph

Set of clusters

O
ther M

ethods

H
ierarchical clustering

k-m
eans clustering

N
eural N

etw
orks, e.g. K

ohonen M
aps

T
ree

Set of clusters

H
ilsenbeck et al. (1999), J. N

atl. C
ancer Inst. 91: 453

Friedm
an et al. (2000), Proc. R

E
C

O
M

B
 2000: 127

T
am

ayo et al. (1999), PN
A

S 96: 2907

B
en-D

or et al. (1999), J. C
om

put. B
iol. 6: 281 

S. T
avazoie et al. (1999), N

at. G
enet. 22: 281-285

E
isen et al. (1998), PN

A
S 95: 14863

O
utput

K
han et al. (1998), C

ancer R
es. 58: 5009

B
iplot

Set of clusters

(incom
plete list)

M
ethods for the A

nalysis of
M

ultivariate A
rray D

ata

This is an incomplete list of some commonly applied methods. Naming all of the methods

recently used for microarray data analysis would result in an outline of applied statistics.
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Classification (supervised learning)

Planar projection, also called planar embedding
Most exploratory. Showing how discrete or fuzzy cluster borders are,
how well groups of objects are separated.

m
or

e 
ex

pl
or

at
or

y
Take as input a grouping of objects, aim at delineating characteristic
features common and discriminative to the objects in the group
("classifier"). For new objects, the classifier can be used to determine
the appropriated group.

Clustering (unsupervised learning)

Which objects appear to be different, which similar? No group affiliations
have to be known in advance. However, in practise parameters such as
the topology of the map for SOMs or the expected no. of clusters for
k-means clustering have to be selected.

Most methods recently applied to microarray data fall into one of three groups, namely clas-

sification, clustering, or projection methods. Classification methods take as input a grouping

of objects and aim at delineating characteristic features common and discriminative to the

objects in the groups. The characteristic features are referred to as classifier. For new ob-

jects, the classifier can be used to determine the appropriate group. For cancer research, these

objects may consist of different tumor cell lines or of tumor samples of different tumor-types,

stage or grade, often supplemented by normal tissue of the particular organ [17]. Examples

of classification methods range from linear discriminant analysis [14] to support vector ma-

chines [8] or classification and regression trees (CART, [7,11]). Clustering allows investigation

of which genes or hybridizations appear to be different, and which transcription profiles ap-

pear to be similar. Examples of clustering techniques are k-means clustering [27], hierarchical

clustering [12], and self-organizing maps [26]. Clustering tends to be more explorative than

classification. No group affiliations have to be known in advance. However, parameters such

as the topology of the map for self-organizing maps or the expected number of clusters for

k-means clustering have to be selected. Varying parameters may result in altered output, and

inappropriate parametrization in uninformative results.

Projection methods produce a low dimensional projection of an originally high dimensional

data set. One can, for example, represent genes as numerical vectors with the number of

elements of each vector being the number of hybridizations involved. Therefore those vectors

could be plotted as points in hybridization dimensional space, if only the number of dimensions

were small enough for visualization. Methods such as multidimensional scaling (MDS) [5] or

principal component analysis (PCA) [22, 19] as well as the technique described here, project
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Method Output Reference

Classification
Weighted voting
CART
Support vector machines
Artificial neural networks (ANN)
k-nearest neighbors
ISIS
Bayesian regression

Classifier
Tree
Classifier
Classifier
Classifier
Bipartitions
Classifier

[17]
[7, 11]
[8, 16]
[21]
[30]
[28]
[29]

Clustering
Hierarchical clustering
k-means clustering
Clustering affinity search
technique (CAST)
Kohonen maps
Cluster identification via
connectivity kernels (CLICK)
biclustering
Gene shaving

Tree
Set of clusters

Set of clusters
Set of clusters

Set of clusters
Set of clusters
Set of clusters

[12]
[27]

[4]
[26]

[24]
[10]
[18]

Planar embedding
(projection)

Multidimensional scaling
Principal components analysis
Singular value decomposition

2D- or 3D-
projection plot

[20]
[19]
[2]

Other methods
REVEAL
Bayesian networks

Directed graph
Directed graph

[23]
[15]

Table 1: Methods frequently used for microarray data analysis.
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these points into a two or three dimensional subspace so that they can be plotted. Such an

embedding attempts to represent objects such that distances among points in the projection

resemble their original distances in the high dimensional space as closely as possible. An

example of the above mentioned objects is hybridizations as vectors in gene space.

Correspondence Analysis

Visualises hybridisations and genes at the same time

hybridisations and genes
Reveals interdepencencies (’correspondence’) between

Exploratory: no parametrisation needed

among the data points
characterises predominant variations

experiment space

vectors in m-dimensional

n gene profiles: m hybridisation profiles:

vectors in n-dimensional

gene space

Brief methodology

conserving point to point distances

(total variance) as well as possible

(-> explained variance)

projection into a common subspace of

low dimensionality for visualisation
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plane

gene z

gene z
gene y

...

gene x

hybridisation 1

. . .

gene x

;-)

gene y

gene w

3
4
5
6
7
8
9
10

2

. . .

The m columns of a table of n genes × m hybridizations are represented in n-dimensional gene

space (three dimensions are shown). n ranges from a few hundred to tenths of thousands. Most

microarrays comprise several thousand elements. A plane is selected such that the distance

of the hybridization vectors to the plane is minimal, thus conserving point-to-point distances

among these vector points as well as possible.
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4

plane

gene z
gene y
gene w

hybridisation 1

hybridization 1

;-)

3

7

5
6

...

8
9
10

2

gene v
gene u
gene t

hybridization 2

hybridization 3

hybridization 4

. . .

Vice versa, one can regard the gene vectors in hybridization-dimensional space, projecting the

genes as done above for the hybridizations.

In
te

ns
ity

condition 1 condition 2control

Hybridizations

To look into the interpretablility of such a plot, let me introduce a constructed (virtual) data
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example. It resembles real data in that the majority of the genes is lowly or not transcribed

to a measurable amount. It comprises only 24 genes and differs from the real world in perfect

reproducibility among the two hybridizations of each experimental condition.

centroid

0 y

0
x

control

condition 1

condition 2

gene
hybridizations

This is the expected output, demonstrating the properties of such projections more clearly

than possible by showing a single plot of real data. Gene-clusters are shown together with the

according gene profiles. The abscissa represents the first, the ordinate the second principal

axis. Both axes are dimensionless. The following properties of such a plot are useful for its

interpretation.

• Hybridizations showing high similarity in expression profile, for example because they

belong to the same experimental condition, have a short distance in the 24-dimensional

gene space, and therefore they will be neighbors in the projection as well.

• Genes with high intensities in a condition are located in the direction of this condition.

The two genes located in the direction of the blue condition (upper right corner) are

both upregulated particularly in the blue condition.

• Genes particularly downregulated under this condition are located at the opposite side

of the centroid. One can regard this gene (lower left corner) as being downregulated in
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the blue condition. Another valid interpretation is, that it is located in the direction of

the bisection line between the red and the green condition because it is equally abundant

in these two conditions.

• All genes with unchanged expression, or those not expressed to a measurable amount

in any of the conditions under study are located near the centroid. For experiments

with comprehensive or complete gene sets, i.e. sets not particularly selected for high

expression, the genes that are not detectable will be the majority. The CA plot will

show a centric cloud of many genes lacking significantly changed expression throughout

the experiment. The outer regions of the plot will contain the so-called ‘differential’

genes. Their distance to the centroid will reflect the significance of displaying differing

expression from the ‘average’ ones in terms of χ2 - statistics, which are placed at the

center of the plot.

T
um

or vers. norm
al (control) tissue biopsies of 3 patients

2 repetitive hybridisations per tissue &
 patient

D
ouble spotting: each spotset draw

n as separate ’hybridisation’ (dark / light color)

501 m
ost affected E

ST
s (out of 16128) depicted

G
enes upregulated in tum

or are located in the left half of the plot

G
enes dow

nregulated in tum
or tissues are draw

n in the right half

−
0.8

−
0.6

−
0.4

−
0.2

0
0.2

0.4
0.6

0.8
1

−
0.6

−
0.4

−
0.2 0

0.2

0.4

0.6

0.8 1

R
enal clear cell carcinom

a

C
ontrol tissue sam

ples
T

um
or patient 1       

       patient 2      
       patient 3      

Now knowing at least roughly how to interpret such a plot, let’s have a look on a simple real

data example. Biopsies of both tumor tissue - the tumors being renal clear cell carcinoma

- and normal tissue of the same patient (as a control) have been sampled and hybridised,

imaged, normalized, quality filtered and projected.

The tumor tissues on the left half of the plot - tagged by three colors for three different patients

- are separated from the normal tissue samples on the right. And all the genes upregulated

in the tumor are located on the left side, all those downregulated in the tumor we find in the

right half of the plot.
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To introduce the method, its performance is demonstrated on a well-known data set. This

set comprises the hybridizations referred to by Spellman et al. which are publicly available1.

Spellman et al arrested the S. cerevisiae cell cycle by four different methods, namely α factor-,

CDC15 - and CDC28 -based blocking, and elutrition. At certain timepoints after releasing the

block, samples from each of the methods had been drawn, their cell cycle phase had been

classified and the transcriptional status assayed by microarray hybridization.

The transperancy has been reproduced from P. T. Spellman, G. Sherlock, et al. Comprehensive

identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray

hybridization. Mol. Biol. Cell, 9:3273-3297, 1998. It shows gene expression during the yeast

cell cycle. Genes correspond to rows, and the time points of each experiment are the columns.

The ratio of induction/repression is shown for each gene such that the magnitude is indicated

by the intensity of the colors displayed. If the color is black, then the ratio of control to

experimental cDNA is equal to 1, whereas the brightest colors (red and green) represent a

ratio of 2.8:1. Ratios >2.8 are displayed as the brightest color as well. In all cases red

indicates an increase in mRNA abundance, whereas green indicates a decrease in abundance

compared to the control samples (stemming from asynchronous cultures of the same cells

growing exponentially at the same temperature in the same medium). Gray areas (when

visible) indicate absent data or data of low quality. Color bars on the right indicate the phase

group to which a gene belongs (M/G1, yellow; G1, green; S, purple; G2, red; M, orange).

These same colors indicate cell cycle phase along the top. Genes that share similar expression

profiles are grouped. The dendrogram on the left shows the structure of the cluster.

1http://genome-www.stanford.edu/cellcycle/data/rawdata/combined.txt
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(b)

(a)

The planar embedding (of exactly the same data) produced by CA shows the hybridzations

clearly separated according to their cell cycle phase. They are arranged in circular order of

correct sequence. The lines denoting the direction of the hybridization medians emphasize
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this arrangement. The black dots correspond to genes. Genes that show strong expression in

a certain phase are located in the direction determined by the hybridizations of this phase.

The farther away from the center the genes are, the more pronounced is their association

with that phase. Genes that are down-regulated in this phase appear on the opposite site of

the centroid. As an example of strong association with the S-phase, the gene profiles for the

histone gene cluster, also marked by Spellman et al., are encircled in black. Their profiles

are shown below (b) which is further subdivided according to the method of cell cycle arrest

that had been used. The red-encircled genes will be discussed below in the context of CDC14

induction. Genes equally transcribed in most or all of the cell cycle states had been removed

by Spellman et al., causing a hole near the centroid of the CA plot where otherwise genes

would lie that show little change.

Upon close inspection the biplot reveals interesting details about the data. It should be

noticed that hybridization cdc15 30 (cdc15-based blocking, 30 min timepoint) classified as

M/G1 (yellow) lies in the green (classified G1) sector rather than in the yellow one. Likewise,

hybridization cdc15 70 is classified G1 but clusters together with the blue dots (S-phase), and

one S-phase hybridization, cdc15 80, lies in the red sector of G2 hybridizations. All these

outliers come from the series of hybridizations where the cell cycle arrest was achieved using

CDC15 -based blocking. This arrangement of cdc15 hybridizations suggests an improper phase

classification for these samples.

This hypothesis can be validated based on the gene profiles. For the histones, the shift towards

an earlier stage in cell cycle is visible in the upper right panel (b). Timepoints cdc15 30

through cdc15 90 show the upregulation of the histones already at the end of M/G1 (yellow)

instead of G1 (green) as well as too early downregulation: the curves intersect the zero line

(identity to the control channel) at cdc15 90, classified as G2 (red) instead of M (brown),

as e.g. in the elutrition experiment. The nine histones are only a small subset of the 800

cell-cycle regulated genes. Profiles of other genes, though different from the ones plotted,

also display shifting of the above timepoints to expression patterns associated to an earlier

state in cell-cycle by the remaining timepoints (data not shown). CA computes the projection

for timepoints cdc15 30 to cdc15 90 according to their expression patterns in the entirety of

the geneset, independent of their phase classification. The CA plot displays them displaced in

clockwise shift compared to equally colored squares, that is in positions inconsistent with their

cell-cycle state classification. While clustering together the nine histone genes, the original

figure by Spellman et al. does not properly show this shift.

21



Above two transperancies show all information needed to implement a simple CA algorithm.

It can be easily done by using nested for loops. A much shorter implementation without

loops can be achieved in any programming language supporting matrix multiplication and

providing a routine for singular value decomposition, e.g. in MATLAB (see http://www.ub.

uni-koeln.de/ediss/archiv/2002/11w1296.pdf, Appendix B).
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Alter et al. (O. Alter, P. O. Brown, and D. Bostein. Singular value decomposition for genome-

wide expression data processing and modeling. Proc. Natl. Acad. Sci. U.S.A., 97:10101-

10106, 2000.) successfully applied singular value decomposition to the analysis of the same

data set. In CA plots, the distance of a given gene from the centroid represents the strength

of its association with a hybridization lying in the same direction and vice versa. A direct

comparison with phase and radius in the visualization of Alter et al.2 shows that this is not

necessarily the case in the singular value decomposition alone.

2as given e.g. at http://genome-www.stanford.edu/SVD/PNAS/Datasets/Sort Elutriation.txt
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As shown above, it might be useful to visualize deviations of outlying measurements from the

expected state. However, data sets frequently comprise severe outliers such as this one.

Wild type yeast was exposed to different concentrations of sodium chloride in the medium (see

legend). Normalized transcription intensities of 14 genes are shown in a parallel coordinates

plot, lines representing measurements and being color coded according to their particular

experimental condition. The plot presents a typical subset of genes, representative with regard

to the high number of genes not expressed to a measurable amount. Whereas the different

conditions are reproducibly measured for most genes, SCT1 shows one far outlying signal for

0.3M NaCl (blue), which in this case is due to agglutinated label. In the corresponding image

(below), the bright dots of unspecifically bound label are common to radioactively labeled

targets, whereas the most severe outliers among multichannel data are frequently caused

by highly flourescent dust (not shown). The ordinate shows arbitrary (machine dependent)

intensity units.

For this reason, a thorough preprocessing is essential. Different normalization algorithms

are applied to single and multichannel data for the different meaning of the particular raw

intensities. Intensity-, ratio-, and reproducibility filters are applied to extract genes of marked

24



expression for both types of data.

Genes with generally low reproducibility for most of the conditions under study are filtered

out by the reproducibility filter. However, with increasing numbers of conditions, discarding

all genes with low reproducibility in one of the conditions will leave no gene undiscarded. The

same is true for the intensity filter. It is therefore reasonable to use these filters to discard

only genes with low abundance or low reproducibility (often coinciding) in all the conditions

under study. Thus, outliers as shown above have to be handled by other measures. Otherwise,

they would seriously interfere with CA analysis, which in contrast to other methods is not

similarity-driven but aims at displaying variance. Any difference to the default state (expected

value) such as an outlier, will be regarded as important for the projection. The larger the

difference, the more distinctly the corresponding point will be plotted.

We prevent this by choosing the principal axes according to the condition medians only (HMS).
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Let me first introduce a new data example. Here, a transgene was transfected into yeast cells

under the control of a galactose inducible promoter:

Red empty boxes are WT yeast without galactose in the medium, blue WT with galactose,

green the transgenic strain without galactose and pink transgenic with galactose and here we
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would expect the transgene to be induced and genes that follow the transgene. The aim was

to separate those genes from all the genes which are upregulated by galactose in yeast anyway,

that is: also in the WT strain.

The bisection line between WT and transgenic strain with galactose (black arrow) points to

the genes induced by galactose both in the transgenic and in the WT strain. There we find

genes like Gal 7 and Gal 1. The red arrow points to the genes upregulated specifically only

in the transgenic strain - those are the genes the experimenter intended to look at with this

experiment.

Typically, replicate hybridizations are performed for each condition under study leading to

several values for one gene/condition pair. The number of such repeated hybridizations is

often small. I therefore represent these values by their gene-wise median rather than their

gene-wise average because the median is less sensitive to outliers. The need remains, though,

to visualize also the original data and not only the median since they contain valuable informa-

tion about experimental variance and quality of individual hybridizations. In fact, CA offers

the possibility to reflect both aspects. To this end, CA is first effected by using the gene-wise

medians, determining the coordinate system to embed the original hybridization intensities.

These data points are then referred to as supplementary points or points without mass. Thus
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the share of noise belonging to an experimental condition is shown by the spread of its hy-

bridizations around the median. As the dimensions of the data are reduced by using medians

of hybridizations per experimental condition, I refer to this strategy as hybridization-median

determined scaling (HMS).

The embedding for hybridizations without mass is computed as follows. Let the matrix N

contain only the hybridization medians and let N? of elements n?ij′ be the original data matrix

containing all the hybridizations. N is submitted to CA. Let P? have elements p?ij′ = n?ij′/n
?
++.

The principal coordinates for the supplementary hybridizations from correspondence matrix

P? are then calculated as

g?j′k =
1∑
i p

?
ij′

∑
i

p?ij′fik

λk
.

In our own data sets, a single hybridization consists of two corresponding spot sets because each

cDNA had been spotted twice on the array. I refer to these spot sets as primary and secondary

spots. They tend to show a higher correlation than hybridizations belonging to the same

experimental condition. Plotting them separately (duplicating the number of supplementary

points) provides an atomic unit of distance in the biplot, where no units are assigned to the

axes.

Projection methods generally aim at explaining the major trends in the data while at the same

time ignoring minor fluctuations. HMS has been demonstrated to further enhance this effect

(Fellenberg et al., attached).
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Due to all these precautions and given a sufficient number of repeated hybridizations, the vari-

ance explained by a CA plot will largely reflect biological changes, displaying the significance

of differences both among the genes and among the hybridizations in terms of the χ2-statistic.

The power of the CA technique however is that it is able to show associations between genes

and hybridizations. To fully exploit this property, it is necessary to examine the exact direc-

tions of gene-association with the experimental conditions. These are given by the standard

coordinates of the according condition medians rather than by their principle coordinates. An

experiments represented in standard coordinates can be viewed as a virtual gene having its

entire mass (intensity) in this particular experiment. Thus, it is the gene of highest possible

association with this experiment, able to “represent” the experiment in “gene-space”. Plotting

the standard coordinates directly would cause all principle coordinates to shrink into a small

area in the middle of the plot. The introduction of lines representing the standard coordinates

is of great help in the interpretation of the plots, relating genes and conditions to each other

and circumventing direct plotting.
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It is equally important to tackle the problem of unduly high ratios in the low intensity region.

As already mentioned, only those genes are filtered out that are low in every condition under

study. To lower the impact of low intensities on the intensity ratios, the normalization method

described in

• T. Beissbarth, et al. Processing and quolity control of DNA array hybridization data.

Bioinformatics, 16:1014-1022,2000.

has been modified, additively shifting the normalized matrix back to its original expression

level. To exemplify the benefit of simply adding a certain number to all of the values, consider

that a shift from 0.02 to 0.04 resembles upregulation by factor 2, whereas a change from

1000.02 to 1000.04 does not.

Above transperancy summarizes all the discussed measures adapting CA to the particular

requirements of microarray data.
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Some Biology: Genes in the direction of galactose induced transgenic yeast are those specifi-

cally upregulated upon CDC14 induction as opposed to genes activated by galactose also in

the WT strain, like GAL1 and GAL7. This subtraction has been achieved purely computa-

tionally and is based on the provision of galactose activated genes in wild type as a separate

condition. The set of genes associated specifically to the Cdc14p overproducing condition

comprises CDC14 itself as well as SIC1, known to be accumulated in a Cdc14p dependent

fashion [1] and CTS1 which belongs to the cluster of SIC1 co-regulated genes [2]. RME1,

CRH1 and PST1 are known to be cell cycle regulated with peaks in mitosis/G1 transition,

G1 or late G1, respectively but have not yet been described in association with Cdc14p activ-

ity. YBR071W, PIR1, YGR086C, YLR194C, and YFL006W have not been annotated to be

cell cycle regulated, but these results show that they are. This is in agreement with the data

of Spellman et al. (right panel, genes marked by red circles), which also show these genes to

be transcribed during mitosis/G1 transition. The role of the nuclear pore protein GLE2 in a

Cdc14p activation context remains unclear.
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The biological context of CDC14 is sketched in the following transperancy.
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The last data example relates to the second part of the talk. A time course has been recorded

for wild type S. cerevisiae cells under oxidative stress. The thin black arrow draws the chrono-

logical progression of the experiment. The cells responding to 0.2mM hydrogenperoxide in their

medium show quite a leap in expression behaviour between 15 and 20 minutes that includes
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the downregulation of genes which had been switched on in the initial phase of the response.

Four of those are flagged. Their gene profiles are plotted below. They are switched on initially

and are being downregulated somewhere between 15 and 20 minutes.
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In the above example there is obviously something wrong. It is exactly the same

experimental setting as before but now the yellow 30’ condition is divided into two clusters

located far away from each other and distorting the nice picture of the previous plot.

And we want to know why. What is wrong with the outliers? In other words: Can we

find features in the experimental description which are characteristic for the outlying cluster?

Are there annotation values overrepresented in the cluster? Or are there values missing or

underrepresented in the cluster?
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Data Warehousing

To enable interpretation of large data sets, the data produced need to be stored in a suitable

way to allow for global comparison [3]. For rapid and simple access, data should be stored in

common format, e.g. in a database, rather than in unequally structured flat files. Database

repositories provide the convenience of consistent view, defined interfaces and increased access

performance. Build-in methods for multiuser operation as well as a centralized administration

enable high standards for data security in addition.

The advantages of standardized storage apply not only to the signal intensities for each item

in an array but also to all available descriptions of the sample from which the RNA has been

derived, and all details of its treatment.

Several database projects are currently addressing these questions. While ExpressDB (Har-

vard, [1]) aims at storing data from nearly all available platforms, i.e. cDNA and oligonu-

cleotide chips as well as SAGE (serial analysis of gene expression), a different focus has been

to develop systems for consistent description of the samples used and the genes mounted on

the array, e.g. in GeneX3 (NCGR), GEO4 (NCBI), ArrayDB (NHGRI, [13]), ArrayExpress

(EBI, [6]), and RAD5(UPenn, [25]), the last one combining both objectives.

3http://www.ncgr.org/research/genex/
4http://www.ncbi.nlm.nih.gov/geo/
5http://www.cbil.upenn.edu/RAD2
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Data upload. Along with the transcription intensities, experiment annotations have to be

stored. These should explicitely characterize the sample and its treatment, RNA preparation

and labeling steps, hybridization and washing as well as the imaging process in sufficient detail.

Arabidopsis experiment annotation:

see http://www.dkfz-heidelberg.de/tbi/services/mchips/arabidopsis.html

(11 other organisms at

http://www.dkfz-heidelberg.de/tbi/services/mchips/#annos)

Experiment annotations may comprise, among other things, the description of environmental

conditions, genotypes, clinical data, type of tissue, estimated degree of contamination by

other cell types, or the sampling method. Annotations related to the hybridization protocol,

properties of the individual array or imaging process are also included. Because both sample

biology and experimental settings (protocols) are complex, the list of parameters to account

for is too large to be investigated by eye even for small sets of hybridizations. Because visual

inspection is impossible, automatic (computer based) analysis is needed.
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In practise: Selecting these outliers, scanning for at least 2-fold over-or underrepresented

annotation values results in values belonging to only 8 out of 111 annotations, listed in the

next transperancy.
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value 59 is 7x overrepresented (2/2 in cluster : 2/14 in total
value 61 is absent (0/2 in cluster : 12/14 in total

annotation 1053: tem
porary_additive

M
ore than or exactly 2x over/underrepresented:

annotation 2: array_series

annotation 3: array_individual

annotation 7: array_hybridisation

annotation 39: experim
entator

annotation 1055: incubation_period

value 30 is 3.5x overrepresented (2/2 in cluster : 4/14 in total)

value 20 is absent (0/2 in cluster : 2/14 in total)

value 15 is absent (0/2 in cluster : 2/14 in total)
value 10 is absent (0/2 in cluster : 2/14 in total)
value 5 is absent (0/2 in cluster : 4/14 in total)

value 1123: none is absent (0/2 in cluster : 2/14 in total)

value 104: bastuk is absent (0/2 in cluster : 2/14 in total)

value 6 is absent (0/2 in cluster : 1/14 in total)
value 5 is absent (0/2 in cluster : 1/14 in total)

value 6 is 7x overrepresented (2/2 in cluster : 2/14 in total)
value 5 is absent (0/2 in cluster : 4/14 in total)
value 4 is absent (0/2 in cluster : 2/14 in total)
value 3 is absent (0/2 in cluster : 2/14 in total)
value 2 is absent (0/2 in cluster : 2/14 in total)
value 1 is absent (0/2 in cluster : 2/14 in total)

Y
ields 6 out of 72 annotations characteristic for the outlying 

hybridisation cluster

A
utom

atic analysis of experim
ental annotations: 

These annotations are possible candidates to explain the cluster formation. Some can be

excluded when considering their meaning in the experimental context. The annotation ‘in-

cubation period’ records the time points, and ‘temporary additive’ describes whether or not

hydrogen peroxide was present in the growth medium, both only reflecting that the selected

measurements belong to the 30 min timepoint.

‘Label incorporation rate’ and ‘total activity’ of incorporated label can be also disregarded for

characterization of the cluster, because values annotated for the measurements in the cluster

show up in mid-range for both annotations in the list.

The absence in the cluster of a particular ‘experimentator’, who performed two out of the

twelve measurements outside the cluster is unlikely to explain the difference between cluster

and other measurements. The same applies to not rehybridizing the array for the 5th or 6th

time (annotation ‘array hybridization’).

The first two annotations listed mean that the entire cluster was hybridized on ‘array individ-

ual’ 6 which is the only one stemming from ‘array series’ (i.e. production batch) 59, whereas

all other arrays were from series 61. From other experiments, sufficient comparability among

arrays of the same production series has been observed, whereas arrays of different batches
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could not be directly compared. The differential array batch used for hybridization in the

selected measurements causes their profiles to be different. The CA plot shows them clearly

separated not only from the remaining measurements of the 30 minutes timepoint but also

from all other measurements. This artifact distorts the projection of an otherwise sound and

revealing dataset - omitting the two outlying measurements for analysis results in the sound

and revealing CA plot on the last but one transperancy of the CA part.
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How to obtain such a list? Instead of using the χ2-test statistic to determine, which annotation

values are characteristic, let’s consider a simple way to access these associations. Consider the

yeast specific enumeration-type annotation ‘growth phase’ that can take 3 different values,

namely ‘exponential’, ‘stationary’ or ‘pseudo-hyphal’. The corresponding hybridization data

points are drawn as rectangles, hexagons and triangles, respectively. Focusing on the triangles,

one can count their frequency in the encircled hybridization cluster, which is 1
2

(5 out of 10)

as well as in the entire set ( 8
48

= 1
6
). Dividing the first by the second frequency suggests a

3-fold over-representation of the value ‘pseudo-hyphal’ in the selected cluster. In the same

manner, all values of all annotations can be scanned for being characteristic, i.e. over- or

underrepresented in a hybridization cluster, thus enabling automated analysis of large and
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complex data sets. The resulting (characteristic) experimental parameters are candidates for

explaining the cluster formation, i.e. they are candidates for being the active players which

drive the cells to the observed transcriptional state.

Simple as it may be, this method already provides good analytical access to long lists of anno-

tations and huge sets of hybridizations, which could hardly be evaluated by visual inspection.

While this is a simple and easy to explain way to do so, statistical tests would certainly better

suit this task. However, any statistical analysis will require that the variables (annotations)

are of categorical range and that instances of occurance can be counted for any annotated

value:

misspellings

meaning of words depend on context

different researchers use different words to 
represent the same item

Free text annotation:

interfere with counting such values !

Misspellings, different textual representations of semantically identical items, and, vice versa,

ambiguous words whose meaning depends on the context, interfere with counting such values.

With these limitations to access for computer based, i.e. statistical, analysis, global studies of

large data sets will not be possible.
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data cemetery

assigning defined values by text mining

big effort

--> loss of information

instances of occurance

--> 100% information accessible

Defined values

Free text annotation
or

percentage may be low
recovering a share of the original information

are countable

Values are not directly countable in free text annotationPROBLEM:

Statistical Access to Experiment Annotations

solution 1 solution 2 solution 3
pattern matching                      few free text fields                 no free text at all

Instead of tolerating free text annotation in addition to a greater or smaller share of “controlled

vocabulary”, we do without any freetext.
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While in free text descriptions the number of occurences of a value is not directly countable,

dispensing with free text also causes problems. An arbitrary-length free text field allows to

annotate each possible value and may also take any number of such atomic pieces of informa-

tion. In contrast, the type of annotation described above is restricted to predefined values.

New annotations and/or new values for existing annotations have to be added constantly as

new experiments are designed. This requires the ability to define new annotations rapidly

without altering the database scheme, i.e. during normal database operation. The absence

of highly flexible free text annotations has to be compensated for by increased flexibility in

database storage.
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Database model

RelationalObject-oriented 

easy access automation,with numerous relations
between stored entities data portation,

db administration

simple-structured datacomplex data sets

good for  for

In principle, a microarray database could be either object-oriented or relational. The object-

oriented model is chosen for complex data sets where numerous relations exist between the

stored entities. In contrast, relational databases are convenient for simple-structured data and

easy to handle with respect to access automation, data portation, and database administration.

A microarray database will consist mostly (more than 99% of storage space in our databases)

of intensity data which can be perfectly stored in tables and show few relations to other items.

I therefore decided to focus on the relational rather than the object oriented model due to the

simplicity and good portability among different database management systems (DBMS).

A relational database consists of

• relations, also called tables. Such a table relates between

• attributes also referred to as data fields or columns of such a table and may contain

an arbitrary number of

• tuples, also termed records or datasets, which are represented as the rows of a table.

In addition to ‘table’, ‘column’, and ‘row’, I will frequently use the formal relational terms

relation, attribute, and tuple, respectively.
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3

.

.

.

self_made

self_made

array_source

genome_systems

nylon

polypropylene

glas

array_support

PCR

PCR

colonies

spotted_material annotation defined value

array_source
array_source
array_support

array_support
spotted_material
spotted_material

array_support

self_made
genome_systems
glass
nylon
polypropylene
colonies
PCR

DEFINITIONS

ex
p

er
im

en
t

.

.

.

annotation value

2 array_source genome_systems

1

1

1

array_source

array_support

spotted_material

self_made

nylon

PCR

ANNOTATIONS

The parameter names such as “array source”, let us refer to them as “annotations”, may

become the attributes (column names) of a single table. Another possibility is to make them

the content (the tuples) of a first table, whose only purpose is to define the annotations along

with the values they may take. Here, a second table is needed to store the actual values taken

in particular experiments.
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by ST
R

U
C

T
U

R
E

by C
O

N
T

E
N

T

new
 annotation

new
 kind of annotations

hierarchy becom
es m

ore com
plex

(increased nesting depth)

’headings’ table
=

=
>

 no problem

new
 colum

n in 
! new

 hierarchy has to
be recognized or 

new
 attribute (colum

n)
have to be found and
handled by algorithm

s

’headings’ table
=

=
>

 no problem

new
 entry in 

new
 table

have to be found and
handled by algorithm

s

new
 entry in 

definition table
=

=
>

 no problem

described externally

The increase in redundancy - annotations only take a tiny share of the storage space anyway -

is more than compensated for by the increase in flexibility. New items can be inserted without

changing the database structure nor any algorithm operating on it.

D
B

by ST
R

U
C

T
U

R
E

by C
O

N
T

E
N

T
(hard-w

ired approach)
(im

plem
ented in M

-C
H

IPS)

algorithm
ic level

on database level,
hands on com

plex 
task to the

deals w
ith com

plexity

standardized access
for analysis

U
SE

R

A
L

G
O

R
IT

H
M

S

Thus, a “by content” - implementation deals with the complexity e.g. of experiment annota-

tions already at the database level. It provides a standardized platform for algorithms (which

may be complex enough without that task).
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experimental annotations: DEFINITIONS

annotationheadings
heading1no|heading1                     |heading2no|heading2         |heading3no|heading3                
−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−
         1|common_annotations           |         1|array            |         1|−                       
         1|common_annotations           |         2|hybridisation    |         2|RNA_preparation         
         1|common_annotations           |         2|hybridisation    |         3|labeling                
         1|common_annotations           |         2|hybridisation    |         4|hybridisation_conditions
         1|common_annotations           |         2|hybridisation    |         5|stringency_wash         
         1|common_annotations           |         2|hybridisation    |         6|detection               
         1|common_annotations           |         3|sample           |         7|−                       
         2|organism_specific_annotations|         4|genotype         |         8|−                       
         2|organism_specific_annotations|         4|genotype         |         9|−                       
         2|organism_specific_annotations|         4|genotype         |        10|auxotrophic_marker      
         2|organism_specific_annotations|         5|growth_conditions|        11|−                       
         2|organism_specific_annotations|         6|medium           |        12|−                       
         2|organism_specific_annotations|         6|medium           |        13|C_source                
         2|organism_specific_annotations|         6|medium           |        14|additive                
(14 rows)

annotations
lastheadingno|ano|nextano|annotation              |vno|nextvno|value                           
−−−−−−−−−−−−−+−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−+−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            1|  1|      2|array_source            | 10|     11|self_made                       
            1|  1|      2|array_source            | 11|     12|genome_systems                  
            1|  1|      2|array_source            | 12|     13|clontech                        
            1|  1|      2|array_source            | 13|     14|research_genetics               
            1|  2|      3|array_series            |  0|      0|[]                              
            1|  3|      4|array_individual        |  0|      0|[]                              
            1|  4|      5|array_support           | 14|     15|nylon                           
            1|  4|      5|array_support           | 15|     16|polypropylene                   
            1|  4|      5|array_support           | 16|     17|glass                           
            1|  5|      6|spotted_material        | 17|     18|PCR                             
            1|  5|      6|spotted_material        | 18|     19|colonies                        
 ...
           13| 50|     51|galactose               |  0|      0|[%]                             
           13| 51|     52|ethanol                 |  0|      0|[%]                             
           13| 52|     53|glycerol                |  0|      0|[%]                             
           14| 53|     54|temporary_additive      |121|    122|H2O2                            
           14| 53|     54|temporary_additive      |122|    123|NaCl                            
           14| 53|     54|temporary_additive      |123|     −1|none                            
           14| 54|     55|concentration           |  0|      0|[mM]                            
           14| 55|     −1|incubation_period       |  0|      0|[min]                           
           12| 48|     49|base                    |118|    120|SDC                             
(135 rows)

In practise, the definition table may be supplemented by another table storing a hierarchy. This

one has 3 columns taking sections, subsections and subsubsections. Independent of the nesting

depth, the numbering of the so-to-speak “smallest” (last) headings relates to the attribute

lastheadingno in the annotations table, thus connecting the two tables.The attributes ‘ano’

and ‘vno’ are used as IDs to reference annotations or their values, respectively. The attributes

‘nextano’ and ‘nextvno’ point to the next entry, thus implementing a linked-list structure.

Values that contain square brackets are not necessarily categorical but are meant to take a

number, e.g. a production batch ID. If a unit can be defined for the value, it will be listed

within the brackets.
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The content of these definition tables serves as meta data to compile html forms used during

the process of annotating an experiment.

A convenient way minimizing efforts in annotation. Every piece of information has to be en-

tered only once. The annotation process may start with copying default values from the most
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similar multiconditional experiment (MCE). Secondly, from the complete list of defined anno-

tations the measurement-dependent ones (those taking different values for each hybridization

or channel such as ‘label incorporation rate’) are selected and then annotated for each single

measurement. Afterwards, from the remaining annotations, those being condition-dependent

(taking different values for each experimental condition under study) for the particular experi-

ment are chosen and annotated for each experimental condition. For the constant annotations,

it suffices to edit few, if the questionaire is prefilled with default values copied from a similar

experiment.

While the contents of the definition tables are used as meta data by the web-based user

interface to compile multiple-choice forms, the results of the annotation process are stored

in annotation tables. These tables take the annotations along with their values taken for a

particular MCE, condition or measurement.
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MCE 1

MCE 2

key

MCE key

key

spotlocations

genenames

...
gene      key

  keys linking with

1. enumeration type

2. number (float)

measurementmeasurement 1

measurement 2

meas. conditions MCEs

meas.3
meas.4
meas.5

meas.1
meas.2

cond. 2 MCE 1

cond. 1

external databases

annotation

(99.8% of tuples) 

intensities

brief gene annotations
definition of 

exp. annotations

exp. annotationsexperiment schemes

Above transperancy shows them (lower right boxes) in database context. Gene annotations,

signal intensities (please note the percentage!), and experiment annotations are displayed in

blue, yellow and red, respectively, also in the next transperancy. The gene annotations are

linked both with the transcription intensities and with public external gene databases (e.g.

GO) in order to enable explicit characterization of genes showing a particualar transcription

behaviour. The intensities are stored as measurements. A measurement (i.e. a hybridization

for radioactive or a single channel for multi-channel data) comprises a single value for each

spot on the microarray. Experiment schemes record for each measurement which hybridization

and experimental condition it belongs to, and which multiconditional experiment (MCE) this

condition is contained in. The experiment schemes are the ‘storekeepers’ of the database,

relating intensity data with experiment annotations, which allow for explicit characterization

of measurements showing a particular expression pattern.
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This scheme takes over arrangement and color code of the overview, dissolving it into database

relations and their attributes. According to the Unified Modeling Language (UML) specifica-

tions6 of the Object Management Group (OMG), a database relation - in the world of objects

represented by a so called ‘class’ - is depicted as a box containing its name and, separated

by a horizontal line, its attributes. Building on the Entity-Relationship-Model (ERM) of P.

Chen [9], relationships between these relations (or classes) can be of three different kinds:

• 1-to-1 relationships are depicted as ‘1—1’. Each tuple (i.e. entry) of relation A corre-

sponds to exactly one tuple stored in relation B.

• Many-to-1 relationships, drawn ‘1..*—1’, indicate that each entry in B may correspond

to more than one entry in A.

• Many-to-many relationships are resolved by a connecting intermediate relation (e.g. the

green table in the center of the diagram).

Table inheritance - on a more abstract level represented by a generalized relationship of a

subclass sharing the structure or behaviour of a superclass - is indicated by arrows. In M-

CHIPS, all child tables have exactly the same structure as their parents (rather than showing

additional attributes). The attributes of these child tables have been omitted in the diagram

for visual clarity. For the same reason, tables of identical structure overlap.

6http://www.omg.org/technology/documents/formal/uml.htm
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annotation definitions
set of ’COMMON’

annotation definitions
’ORGANISM-SPECIFIC’

set of array ’families’
(equal set of clones)

own database

Human tumor
biopsies

analysis algorithms
database structure

shared:

individual:

Trypanosoma brucei

S. cerevisiae

Neurospora crassa

Candida albicans

Arabidopsis

mouse

Each field of research is represented by an individual database containing a set of array ‘fami-

lies’ (each standing for a particular kind of array with a certain spotting scheme). The field of

research is represented by a particular set of ‘organism-specific’ annotation definitions (com-

prising e.g. medium components for yeast or tumor stage for human tumor samples). All

these databases share the same structure and can therefore be handled and analyzed by the

same algorithms. There is also a set of ‘common’ annotation definitions, i.e. those used by all

users (e.g. label incorporation rate).
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hybridisation

RNA_preparation

8 - material_source 21 - fresh

9 - preparation_of_total_RNA 24 - trizol

10 - preparation_of_PolyA+ 27 - none

labeling

11 - amount_of_RNA microgram

40 - amount_of_cDNA microgram

12 - enzym 31 - superscript

13 - priming 34 - oligo_dT

14 - nucleotide 38 - dCTP

ARABIDOPSIS experiment annotation
10-4-2001

Common annotations were compiled by Nicole Hauser, Judith Boer, Rosa Arribas, Frank Diehl and
have been checked for MIAME2 compliance. 

Organism specific part by Marcel Scheideler and Nikolaus Schlaich, who considered the complete list to
satisfy MIAME2 standard. 

References, images (tiff format), a list of array elements incl. controls (including gene/clone IDs, array
location, descriptions and functional catalogue entries for each spot) as well as normalization strategies
and algorithms are not included here but will be available in the results section or directly from the
authors. 

common_annotations

array

1 - array_source 10 - self_made

2 - array_series

3 - array_individual

4 - array_support 14 - nylon

67 - array_support_width mm

68 - array_support_length mm

41 - array_surface_chemistry 117 - unknown_positive_charge

42 - support_manufacturer 121 - Hybond

43 - Hybond_support_brand 127 - non_Hybond

44 - Pall_support_brand 129 - non_Pall

45 - Corning_support_brand 131 - non_Corning

46 - TeleChem_support_brand 133 - non_TeleChem

5 - spotted_material 17 - PCR

69 - spotted_material_property 200 - single_stranded

70 - number_of_elements_on_array_(without_duplicates)

71 - elements_spotted_as 202 - single

47 - spotted_material_purification 136 - non

48 - spotting_buffer 140 - 1.5M_NaCl_0.5M_NaOH

49 - spotting_robot 146 - SDDC-2_ESI

50 - spotting_pins 151 - solid

51 - relative_humidity 154 - defined

52 - relative_humidity %

53 - temperature 157 - defined

54 - temperature deg.C

55 - postprocessing 160 - neutralizing_by_1.5MNaCL_0.5MTrispH7.5_1mMEDTA

6 - readfile

7 - array_hybridisation

hybridisation

RNA_preparation

8 - material_source 21 - fresh

9 - preparation_of_total_RNA 24 - trizol

10 - preparation_of_PolyA+ 27 - none

labeling

11 - amount_of_RNA microgram

40 - amount_of_cDNA microgram

12 - enzym 31 - superscript

13 - priming 34 - oligo_dT

14 - nucleotide 38 - dCTP

56 - nucleotide_removal 169 - G50_Pharmacia

15 - label 40 - 33P

66 - days_from_calibration_date_applicable 193 - yes

38 - days_from_calibration_date d

16 - label_incorporation_rate %

17 - total_activity cpm

hybridisation_conditions

18 - buffer 44 - 0.5M_Na_phosphate_pH7.2_7%_SDS

57 - prehybridization_without_target 176 - no

19 - competitors 49 - none

75 - hybridisation_device 211 - water_bath

76 - hybridisation_instrument 213 - hybridisation_bottle

20 - hybridisation_temp deg.C

21 - buffer_volume ml

58 - coverslip_used 178 - no_(enter_size_0)

59 - coverslip_size mmxmm

22 - hybridisation_length h

stringency_wash

23 - wash_buffer 54 - 0.1xSSC_0.1%SDS

24 - times

25 - wash_length min

26 - temperature deg.C

detection

60 - exposure_time_applicable 180 - yes

27 - exposure_time h

28 - measuring_device 58 - MD_storm860_phos

72 - scanning_software 205 - Fuji_Image_Reader_FLA3000_3000G_V1.0

73 - spacial_resolution microm

61 - pixelsize micromxmicrom

62 - PMT_setting_applicable 184 - no(enter_0%)

63 - PMT_setting %

64 - laser_power_setting_applicable 186 - no(enter_0%)

65 - laser_power_setting %

29 - imaging_software 64 - AIS

30 - background_correction 69 - none

31 - spot_detection 74 - all_spots

74 - spot_dimension_(diameter) microm

32 - spot_size 76 - fixed

33 - intensity_measurement 78 - highest_value_in_spot_centre

sample

34 - organism 81 - Saccharomyces_cerevisiae

submission

35 - date_of_entry_day

36 - date_of_entry_month

37 - date_of_entry_year

39 - experimentator 104 - bastuk

organism_specific_annotations

genotype

3035 - ecotype 3010 - Landsberg_erecta

transgenes_ordered_by_no_in_y1_genes

3036 - genetic_variation 3015 - WT

3037 - transgene no_in_y1_genes

3038 - 2nd_genetic_variation 3015 - WT

3039 - 2nd_transgene no_in_y1_genes

3040 - 3rd_genetic_variation 3015 - WT

3041 - 3rd_transgene no_in_y1_genes

3042 - 4th_genetic_variation 3015 - WT

3043 - 4th_transgene no_in_y1_genes

3044 - 5th_genetic_variation 3015 - WT

3045 - 5th_transgene no_in_y1_genes

markers_transposons_tags

3113 - active_transposon 3098 - no_transposon

growth_conditions

3107 - experimentator_growth_conditions 3091 - schlaich

field

3052 - begin_after_germination d

3053 - end_after_germination d

3054 - soil 3032 - loamy

greenhouse

3055 - begin_after_germination d

3056 - end_after_germination d

3057 - soil %

3058 - sand %

3059 - compost %

3060 - perlite %

3061 - vermiculite %

phytochamber

3062 - begin_after_germination d

3063 - end_after_germination d

3108 - light_per_day h

3109 - light_intensity mol/m2/s PAR

3110 - light_source 3092 - bulb

3111 - day_temperature deg.C

3112 - night_temperature deg.C

in_vitro

3065 - begin_after_germination d

3066 - end_after_germination d

3067 - culture 3036 - solid

3068 - light 3039 - autophototroph

3069 - saccharose mM

3070 - vitamine_B5 mM

3072 - light_per_day h

3073 - light_intensity mol/m2/s PAR

3074 - light_source 3041 - bulb

3075 - day_temperature deg.C

3076 - night_temperature deg.C

treatment

3106 - experimentator_treatment_and_sampling 3090 - schlaich

mechanical_stress

3077 - wounding_type 3043 - not_applicated

3078 - wounding_where 3046 - not_applicated

3079 - wounding_amount mm

auxins

3080 - IAA_delivery 3049 - not_applicated

3081 - IAA_period_begin_after_germination d

3082 - IAA_period_duration d

3083 - IAA_periodicity 3056 - continous

3084 - IAA_application_begin_after_dawn h

3091 - IAA_concentration mM

3085 - 2_4_D_delivery 3058 - not_applicated

3086 - 2_4_D_period_begin_after_germination d

3087 - 2_4_D_period_duration d

3088 - 2_4_D_periodicity 3065 - continous

3089 - 2_4_D_application_begin_after_dawn h

3090 - 2_4_D_concentration mM

cytokinins

3092 - benzyladenine_delivery 3067 - not_applicated

3093 - benzyladenine_period_begin_after_germination d

3094 - benzyladenine_period_duration d

3095 - benzyladenine_periodicity 3074 - continous

3096 - benzyladenine_application_begin_after_dawn h

3097 - benzyladenine_concentration mM

pathogens

3098 - bacteria_application_preparation 3076 - water_sprayed_1h_before

3099 - bacteria_application 3079 - twothird_of_abaxial_leaf_surface_inoculated

3100 - bacteria 3081 - pseudomonas_syringae_pv_tomato_virulent

3101 - bacteria_titer cfu_per_ml

sampling

when

3102 - after_germination d

3103 - after_dawn h

3104 - exact_timepoint_after_treatment min

what

3105 - organ 3084 - leaf

markers_transposons_tags

3113 - active_transposon 3098 - no_transposon

growth_conditions

3107 - experimentator_growth_conditions 3091 - schlaich

field

3052 - begin_after_germination d

3053 - end_after_germination d

3054 - soil 3032 - loamy

greenhouse

3055 - begin_after_germination d

These common annotations are related to the microarray technique, describing the array, RNA

preparation, labelling, hybridization and washing conditions and signal detection. The second

half of the list consists of organism-specific annotations.
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An important issue for implementing and running a database is data integrity also called

data consistency. Suppose a valid alteration of the data, defined by a block of sequentially

performed operations (such a block is called a ’transaction’) breaks down after doing half of

the work. A table could have been deleted but remains registered in the table administrating

system catalogue of the database system. Another example may be the task to add 500 Euro

to everyone’s salary in a table containing employees and now it is unknown which row was

updated and which not. In both cases data integrity (database consistency) is violated. To

prevent damage, the DBMS should be transaction-based. In above cases, the whole transaction

will undergo a “rollback” upon occurance of the error, i.e. the database will be put back to the

state before the start of the transaction. Furthermore it is important to prevent unauthorized

access and to have at hand both global and partial backups to restore the complete system or

accidentally deleted experiments, respectively.
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While the tables containing the gene annotations have only as many tuples (table rows) as

there are genes, transcription intensities add up to this number of entries for each single mea-

surement. Gene and experiment annotations on average only take 0.35% of the storage space.

Since this amount is far too small to be relevant for query performance, flexibility remains the

only time-saving aspect related to experiment annotations. Performance considerations are

related only to the hybridization intensities. Among all intensities, analysis focuses on spots

that represent genes as opposed to empty spots and various kinds of controls. For this reason

we use different tables to store these kinds of intensities, thus minimizing query space.

Having stored intensities and background for genes, empty spots and different categories of

controls, fast querying of tuples for all these categories is mediated by so-called indices, which

immediately guide the search to the specified tuples. If all measurements were stored in

one large table per category, adding a new measurement would be slow because of the time

necessary for recomputing the indices. Therefore, new measurements are inserted as separate

tables, computing indices only for the new tuples.

However, database search is slowed down by increasing the number of separate tables because

there is no global index immediately guiding the search to the table containing the tuples.

Although high performance for write/delete operations is achieved, read access is slow for a

large number of separate tables. In order to optimize both writing and reading operations, we

write or delete measurements as separate tables, but read from large ‘block’ tables that are
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filled by over-night jobs collecting measurements that are no longer to be altered or deleted.

Thus, computation of large indices is performed at times of low traffic as an investment in

query performance. Table inheritance is used as an elegant aid in keeping track of both single

and block tables. Since each access to the intensity tables is directed via one of the parental

tables, query syntax does not change when a set of tables is merged into one block. This block

will be a child of a specific parental table as are the tables to be merged (UML scheme, small

yellow tables). Thus the event takes place at the underlying database level, being completely

insulated from the level of accessing algorithms for reduced complexity.

The only access property changed by this process is query speed. On a SUN E450 server under

Solaris 2.7, a PostgreSQL 6.5.3 server process retrieves two consecutively uploaded hybridiza-

tions (comprising 6103 yeast genes in double spotting) out of 686 stored in separate tables on

average in 85 seconds. The same query performs in 2.3 seconds, if the 686 hybridizations are

assembled into one large table. Even retrieving two out of 2251 hybridizations takes only 2.8

seconds when all hybridizations are en bloc.

� �� � �� �
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This last transperancy summarizes the achievements we made with correspondence analysis

ontop a customized data warehouse solution.
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More information / references

• Further information incl. a detailed description our storage scheme,

• free-text free experiment annotation definitions for 11 different organisms, and

• public data (recently 292 public hybridizations)

can be obtained at http://www.dkfz-heidelberg.de/tbi/services/mchips.
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