
M-CHIPS Storage Concept

Kurt Fellenberg

24th November 2001

Abstract

The M-CHIPS Database concept allows for data analysis of all of its compo-
nents including the experimental annotations. It accounts for rapid increase
in amount of hybridisation data, experimental descriptions becoming more
detailed and new kinds of experiments we expect for the future. This report
aims to present our work on storing microarray data from the more general
aspects down to the practical details.

Definitions

Relations, attributes and tuples

A relational database consists of

• relations, also called classes or tables. Such a table relates between

• attributes also referred to as data fields or columns of such a table and
may contain an arbitrary number of

• tuples, also called records or datasets, which are represented as the
rows of a table.

Query

A database query retrieves a set of tuples from a specified relation which
meet a certain condition (also specified in the query).

Indices

The purpose of an index is to allow rapid access to specified values within a
relation. Without an index, the server process executing a query has to read
from the beginning of the table to the end, looking for relevant tuples. An
index is computed on a relation for one (or several) of its attributes, ordering
the comprised values and storing pointers into the relation in an appropriate
data structure (e.g. a b-tree or hash table). A query is directed to the
matching rows by the index, thus performing much faster than without.

1

Inheritance

The PostgreSQL database management system (DBMS) allows for construc-
tion of table hierarchies by inheritance. Let the table B be created inheriting
from table A, then

• B inherits all attributes of A and

• its tuples are accessible by querying the parental table A

• by anyone having read permission on A regardless of permissions on B.

Data integrity

Suppose a valid alteration of the data, defined by a block of sequentially
permformed operations (such a block is called a ’transaction’) breaks down
after doing half of the work. Maybe a table has been deleted but remains
existant in the table administrating system catalogue of the database sys-
tem. Or the task was to add $500 to everyone’s salary in a table containing
employees and now it is unknown which row was updated and which not. In
both cases data integrity (database consistency) is violated.

2

Contents

1 General Considerations concerning Data Storage 5

1.1 Storing transcription intensities 5

1.1.1 What to store . 5

1.1.2 How to store it . 5

1.2 Storing gene annotations . 6

1.2.1 What to store . 6

1.2.2 How to store it . 6

1.3 Storing experimental annotations 6

1.3.1 What to store . 6

1.3.2 How to store it . 7

1.3.2.1 Flexibility . 7

1.3.2.2 Performance 7

1.3.2.3 Analysis aspects 7

1.3.2.4 M-CHIPS storage 8

2 Realization concepts 10

2.1 Safety considerations . 10

2.1.1 Global accidents . 10

2.1.1.1 Transactions 10

2.1.1.2 Global backups 11

2.1.2 Private errors . 11

2.1.3 Unauthorized access 11

3

2.2 Performance considerations 12

2.2.1 Minimizing query space 12

2.2.2 Separate or block-wise storage 12

2.3 Flexibility considerations . 13

2.4 Considerations related with Analysis 14

3 Implementation 15

3.1 Databases . 15

3.2 Microarray Families . 23

3.2.1 Gene annotations . 23

3.2.2 Administration of the comprised multiconditional ex-
periments . 25

3.3 Multiconditional Experiments 26

3.3.1 Experimental annotations constant within the multi-
conditional experiment 26

3.3.2 Administration of the comprised condiditions 28

3.4 Experimental Conditions . 29

3.4.1 Administration of the comprised hybridizations and
measurements . 29

3.4.2 Experimental annotations dependent on the condition . 29

3.5 Hybridisations . 31

3.5.1 Hybridisation intensities 31

3.5.2 Hybridisation intensities, ‘solidified’ 32

3.5.3 Measurement-dependent experimental annotations . . . 33

4

Chapter 1

General Considerations
concerning Data Storage

1.1 Storing transcription intensities

1.1.1 What to store

Considering the ongoing development of analysis tools for array data, it would
be unwise to store any processed form of the original data because it will be
outdated when their calculation methods change. In order to perform our
calculations on the fly on transcription data as raw as feasable, we decided
to store the signal intensities derived from a hybridisation image by an imag-
ing software. All of the recent releases of these software packages require
human interaction for verification and adaption of a semi-automatically per-
formed spot recognition, impeding on-the-fly calculations on the image data
themselves.

1.1.2 How to store it

Storing intensity information appears to be easy. A hybridisation yields a
huge amount of uniform data comprising, in our case, two intensities and
two background values per gene or EST (being spotted in duplicate). Per-
formance considerations would suggest hybridisation-wise storage in tab de-
limited files or array tuples in a database, dispensing with selective retrieval
of particular values but being fast accessing whole hybridisations. Specified
subsets of spots are not easily accessible in a hybridisation data file nor in an

5

array. However it should be possible to selectively retrieve intensities above
a certain threshold or within a specified interval, thus it is necessary to store
the values for every gene/EST as separate tuples in a database relation. In
this form indices can be calculated to perform fast score-dependent queries
utilizing the database capability of b-tree search. When in future hybridisa-
tion databases will be too large to be loaded into computer memory, it will
become essential to perform tuple selections as well as simple calculations
on the database level before loading compressed results into the memory for
visualization.

1.2 Storing gene annotations

1.2.1 What to store

Gene annotations may consist of clone numbers, accession numbers and dif-
ferent kinds of entries describing the spotted sequence or the encoded protein
like chromosomal location, enzyme categorization number or protein struc-
ture. Here we only include identifiers serving as a key to connect to databases
containing gene information, short variable length free text descriptions of
the protein and its functional category and the spot location. Moreover it
turned out to be necessary to explicitly keep control of the array the spot
is located on, provided that the spotset comprises more than one array and
each of them has been hybridized separately.

1.2.2 How to store it

Because complex sequence annotations or enzyme properties are found in
linked gene databases, the gene annotations may be stored in only one re-
lation containing attributes for the above values, and every spotted element
(gene or EST) can be described by one tuple.

1.3 Storing experimental annotations

1.3.1 What to store

Experimental annotations comprise the description of environmental condi-
tions, genotype, patient data, information about surgery, type of tissue (incl.

6

estimated degree of contamination by other celltypes), the sampling method
and annotations related to hybridisation protocol, properties of the individ-
ual array or imaging process, to give some examples. They fall into the two
realms of

1. Organism-specific annotations resembling the need of the specific re-
search area such as e.g. ‘transgene’ and ‘growth phase’ for yeast or
‘tumor type’ and ‘metastasis location’ for human biopsies.

2. Common annotations that are useful for all fields of interest. These
technique-related properties like array characteristics, description of
labelling, hybridisation and washing conditions or detection of the sig-
nals are annotated by all the users.

1.3.2 How to store it

1.3.2.1 Flexibility

Experimental annotations are set up by the biologists working in the field.
They tend to grow with every new type of experiment performed. To account
for this, an implementation of any concept will be useless if it does not enable
easy and quick addition of new annotations or the completion of values for
already defined annotations without altering the database scheme and the
analysis algorithms. If an annotating experimenter finds something he or she
forgot to define before uploading an experiment, the database should have
the flexibility to incorporate a new annotation or value within a minute.

1.3.2.2 Performance

Gene and experimental annotations taken together sum up to less than 0.35%
storage space of the yeast database (May 2000). Since the share of data
entered directly by human beings may in any case have a size far too small
to be relevant for query performance, flexibility remains the only time saving
aspect related to experimental annotations.

1.3.2.3 Analysis aspects

For the conceptualization of structures for data storage one might prefer
formats supporting a wider range of analytical access to the data than others.

7

Let the experimental annotations, though ordered into various categories and
subcategories, be text fields containing free text description of the annotation
value, e.g. the yeast specific annotation

• growth phase - value: ’exponential’.

From people querying sequence databases in a high throughput manner, one
can learn that there are severe problems like misspelling, different words
having the same meaning, various types of abbreviations, making it hard to
analyse the contents of a text field for a high number of datasets. On the
other hand one would expect the number of tuples (hybridisations / multi-
conditional experiments) of a public expression database, once established,
to grow quite fast. People might cluster these tuples by the expression be-
havior of a set of genes and would want to know which growth conditions,
experimental settings, genotypes or environmental conditions of the organ-
ism corresponded to a particular cluster. In other words: Which properties
are common for hybridizations that share similar expression patterns? This
question cannot be answered by visual inspection alone when looking on
hundreds of hybridizations with huge numbers of sample properties. Sample
descriptions are favourable that enable inclusion of these descriptions into
the process of algorithmical analysis. To make them accessible to statis-
tical analysis, the values of an experimental annotation should be directly
comparable among the datasets. If we for example let the above annnota-
tion ’growth phase’ be an enumeration type variable comprising the defined
values ’exponential’, ’stationary’ and ’pseudo-hyphal’, the occurence of the
value ’exponential’ can be counted within the cluster and compared with it’s
overall occurence to determine if it is characteristic (either over- or under-
represented) for the cluster. Prerequisite is that the annotation values are
enumerable. Apart from enumeration type annotations already mentioned,
floating point numbers can be made enumerable by mapping them to a set
of bins, e.g in a way that each bin covers an equally spaced range of values or
in another manner that seems suitable for the particular annotation in terms
of biological relevance.

1.3.2.4 M-CHIPS storage

Our implementation works now for 33 yeast specific, 70 arabidopsis specific,
54 human tumor specific, 41 trypanosoma specific, and 76 common (techni-
cal) highly categorized experimental annotations. They were set up by biol-
ogists working in these fields enabling statistical analysis of the descriptions

8

of nearly 700 hybridisations stored in a PostgreSQL database. The following
more practical ascpects deal with the realization of such a database for a
multiuser setting.

9

Chapter 2

Realization concepts

M-CHIPS provides a storage concept for unified analytical access to microar-
ray experiments from different fields of research, an instance of which is a
field-specific (organism-specific) database. Although these databases adopt
different ontologies for experiment annotation, they can be accessed by the
very same analysis algorithms. They are designed to be used by the people
who generate the data. To meet the requirements of these users, they have
to allow for multiuser access including safe management of simultaneus write
access, short waiting periods and privacy (protection against unauthorized
access).

2.1 Safety considerations

2.1.1 Global accidents

2.1.1.1 Transactions

DBMSs capable of the administration of more than one version of a database
at the same time (like Oracle or PostgreSQL) protect integrity of the stored
data by transactions. Transactions give databases an all-or-nothing capabil-
ity when making modifications. A transaction can comprise one or multiple
queries with every of the performed changes becoming valid upon successful
execution of the whole transaction and none of them in case of an error. At
the same time all other users are insulated from seeing the partially commit-
ted transaction until the very moment of commitment, preventing database
consistency from being damaged by simultaneous write access. Although

10

transaction-based database management slows down access performance, we
recommend to use a transaction based DBMS.

2.1.1.2 Global backups

Although the choice of a transaction-based DBMS ensures a great amount of
safety for the data, there is no way to guarantee absolute secureness. In case
of a disk headcrash or failure in the server’s power supply while updating
important system catalogues it may well be that the integrity of all the
databases managed by the server is destroyed at the same time. In such a
case we will restore the status of the last night for the whole database system
from tape backup.

2.1.2 Private errors

In case of accidently deleting hybridisations from a single database it would
be inappropriate to reset the whole system to the state of the night before.
To be prepared for such a case, SQL dumps are performed separately for each
database overnight. They consist of SQL queries that can be used to restore
data subsets from a whole database down to a single tuple of a particular
table.

2.1.3 Unauthorized access

To ensure that data (which may be unpublished) cannot be altered nor read
by unauthorized individuals, update and/or read permissions can be granted
on any database table to a particular user. Granting such permissions to
user groups rather than separately to each user is a common procedure to
circumvent the necessity of changing permissions for each database table
upon registration of a new user. In our implementation nearly all the relations
inherit from few parental tables and are accessed via their parental table only.
Permission inheritance enables the administrator to quickly grant e.g. read
access to a new user by changing permissions for a few parental tables in
place of dealing with many tables or user groups. However, the main reason
for access via parental tables is to enable pooling of tuples from hybridisation
tables into large blocks without syntax alteration of accessing queries (which
will be described below 2.2.2).

11

2.2 Performance considerations

Since the overall extent of data referring to gene descriptions and experi-
mental annotations is minimal (see 1.3.2.2), performance considerations are
related only to hybridisation intensities.

2.2.1 Minimizing query space

It is already quite efficient to divide the entirety of spots into appropriate
subsets related to the type of queries that are performed. Most of the analysis
queries target genes rather than empty or control spots, so we recommend
to store at least the genes separately from the rest. In our implementation
the spots are kept in tables belonging to (and inheriting from) 5 different
parental tables comprising

• genes (genes / ESTs - incl. housekeeping)

• empty spots (no DNA has been spotted)

• heterologous DNA (e.g. guide spots)

• heterologous DNA with known concentration (external control spots
for ’spiking’, i.e. assaying standard RNA aliquots added before the
labelling step)

• reference spots (reserved for a novel category of control spots).

2.2.2 Separate or block-wise storage

As already mentioned in 1.1.2, fast querying of tuples is mediated by indices.
If the above categories would contain the hybridisations stored so far as one
big block table per category, adding a new hybridisation would be quite slow
because of the time necessary for recomputing the indices. Because of this,
every new hybridisation is inserted as 5 new separate relations, computing
indices only for the new tuples.

However querying for certain values is slowed down by increasing number
of separate tables, because there is no global index guiding the search im-
mediately to the one containing the tuple. This structure, while enabling
high performance for write / delete operations impedes a fast read access. In
order to optimize both for writing and reading operations, we

12

• write / delete hybridisations as separate tables, but

• read from large blocks,

which are produced by over-night jobs that join those tables (hybridizations)
that are not to be altered or deleted any more. Thus, computing of large
indices is performed at times of low traffic (as an investment in query per-
formance).

While storing hybridizations into blocks includes alteration of the database
structure (decreasing the number of tables), it remains totally insulated from
and invisible to the accessing software (algorithmic layer): Since every access
to the intensity tables is directed via one of the five parental tables listed in
2.2.1, query syntax does not change with the ‘assembly’ of a set of tables
into one block: This block will be a child of a specific parental table as have
been the collected tables, summarized within the new block.

2.3 Flexibility considerations

To meet the requirements described in 1.3.2.1, the categorization of experi-
mental annotations should be kept in definition tables rather than mapped
to database structure itself. In our concept annotations along with their de-
fined values are stored in a definition table. Each annotation has a unique
identification number. They are stored as a linked list including an attribute
pointing to the ID of the annotation next in sequence. The ID serves as a
key for querying the annotations, the defined sequence allows for a clear list
structure facilitating the annotation process. The annotations are structured
by a set of headings and subheadings with an arbitrary nesting depth, which
are stored in a second table. The linked list structure enables adding of a
new annotation at an arbitrary position by linking of the desired predecessor
to a new element that points to the ID of the element following in the list.
In a similar manner the whole set of defined values is numbered sequentially
to enable rapid queries and stored by a linked list in the same table as the
annotations.

To prepare for the administration of experiments related to a new field of
research, it is sufficient to generate an empty database with definition ta-
bles containing the up-to-date list of common annotations along with a new
second half of both annotation definition and heading table containing the
’organism-specific’ annotations for the new field of experiments. A growing
number of already assembled definition lists facilitate to compile new ones by
serving as templates for the description of similar experimental procedures.

13

2.4 Considerations related with Analysis

As described in 1.3.2.3, the annotation values should be categorized down to
an enumerable level, either directly by creating an enumeration type annota-
tion, or by storing a floating point number. These numbers are stored along
with a unit if this is required for a unique meaning/message of the value.
They don’t necessarily have to be non-integer. Discretizing numbers will be
reasonable in cases where

• similar values are expected to have the very same meaning in terms of
their biological impact and

• the probability of those equivalent values to match the very same num-
ber is low because of measurement errors.

14

Chapter 3

Implementation

This chapter will deal with how to suit the action to the world proposing an
implementation of the above concepts. I will start by describing database
specific tables before showing schemes of the tables related to multicondi-
tional experiments and hybridizations. The entirety of microarray data can
be divided into the following sections. Each section is a subset of the one
ahead of it in terms of hybridisation intensities, but comes along with a
unique set of annotations (Tab. 3.1).

3.1 Databases

Our microarray databases are administered by a PostgreSQL database server
process running on a SUN E450. Data are uploaded, annotated and an-
alyzed by users working in different fields of research using samples from
different organisms. A separate database is created for each organism /
field and endowed with particular definitions of experimental annotations
appropriate for the attended sort of sample. Figure 3.1 shows the def-
inition of experimental annotations in relation to other major parts and
gives a rough overview of a database. A detailed scheme is given at http:

//www.dkfz-heidelberg.de/tbi/services/mchips/scheme2.pdf. Apart
from the experiment annotation definition-tables (red boxes on top), the lat-
ter scheme shows two more relations occuring only once per database (on top
in green ‘DATABASE MANAGEMENT’-box). The first stores archive flags
reporting any write access to either tables or BLOBSs (binary large objects)
for an overnight job producing a new backup of the database. It also holds

15

Table 3.1: Database sections

S
ec

ti
on

In
te

n
si

ty
D

at
a

A
n
n
ot

at
io

n
s

d
at

ab
as

e
co

n
ta

in
in

g
al

l
d
at

a
d
er

iv
ed

fr
om

/
re

la
te

d
to

on
e

p
ar

ti
cu

la
r

fi
el

d
of

re
se

ar
ch

(o
rg

an
is

m
)

d
efi

n
it

io
n

of
va

li
d

ex
p

er
im

en
t

an
-

n
ot

at
io

n
s

al
on

g
w

it
h

a
se

t
of

va
li
d

va
lu

es
fo

r
ea

ch
of

th
es

e
an

n
ot

a-
ti

on
s

m
ic

ro
ar

ra
y

fa
m

il
y

d
at

a
ob

ta
in

ed
fr

om
on

e
ar

ra
y

ty
p

e
co

m
p
ri

si
n
g

a
d
efi

n
ed

se
t

of
ge

n
es

/E
S
T

s
in

a
p
ar

ti
cu

la
r

sp
ot

-
ti

n
g

sc
h
em

e

ge
n
e

an
n
ot

at
io

n
s

(s
p

ot
lo

ca
ti

on
,

b
ri

ef
d
es

cr
ip

ti
on

an
d

ke
y
s

re
la

ti
n
g

to
ex

te
rn

al
d
at

ab
as

es
)

m
u
lt

ic
on

d
it

io
n
al

ex
p

er
im

en
t

se
t

of
m

ea
su

re
m

en
ts

co
m

p
ri

si
n
g

tw
o

or
m

or
e

ex
p

er
im

en
ta

l
co

n
d
i-

ti
on

s
in

cl
.

on
e

‘c
on

tr
ol

’
co

n
d
it

io
n

ex
p

er
im

en
t

an
n
ot

at
io

n
s

co
m

m
on

th
ro

u
gh

ou
t

th
e

ex
p

er
im

en
t

(u
n
-

ch
an

ge
d

in
al

l
of

th
e

co
n
d
it

io
n
s)

ex
p

er
im

en
ta

l
co

n
d
it

io
n

co
n
si

st
s

of
on

e
or

m
or

e
h
y
b
ri

d
iz

a-
ti

on
s

re
p

ea
te

d
ly

p
er

fo
rm

ed
u
n
d
er

th
e

ve
ry

sa
m

e
co

n
d
it

io
n
s

co
n
d
it

io
n

d
ep

en
d
en

t
ex

p
er

im
en

-
ta

l
an

n
ot

at
io

n
s

(e
.g

.
th

e
ti

m
e-

p
oi

n
ts

in
a

ti
m

ec
ou

rs
e)

m
ea

su
re

m
en

t
(i

m
ag

e)
on

e
im

ag
e,

i.
e.

on
e

ch
an

n
el

in
ca

se
of

m
u
lt

ic
h
an

n
el

d
at

a
-

co
n
-

si
st

s
of

ge
n
es

/
E

S
T

s,
em

p
ty

sp
ot

s
an

d
d
iff

er
en

t
k
in

d
s

of
re

fe
re

n
ce

sp
ot

s,
al

l
of

w
h
ic

h
ar

e
sp

ot
te

d
in

d
u
p
li
ca

te
(r

ef
er

re
d

to
as

‘p
ri

m
ar

y
’

an
d

‘s
ec

on
d
ar

y
’

sp
ot

s)

m
ea

su
re

m
en

t
d
ep

en
d
en

t
ex

p
er

i-
m

en
t

an
n
ot

at
io

n
s

(e
.g

.
la

b
el

li
n
g

effi
ci

en
cy

,
in

d
iv

id
u
al

ar
ra

y
n
o.

,
n
u
m

b
er

of
p
re

v
io

u
sl

y
p

er
fo

rm
ed

h
y
b
ri

d
is

at
io

n
s

on
th

e
in

d
iv

id
u
al

ar
ra

y

16

Figure 3.1: Overview scheme

�� � �� � � �� �� 	
 � � ��

MCE 1

MCE 2

external databases

annotation

key

MCE key

key

spotlocations

genenames

...
gene key

�� ��� � � � � � � � � �� � � �� � � � � ��
(99.8% of tuples)

 keys linking with

1. enumeration type

2. number (float)

�� ��� � � � � � � �� �
� � � � � � � � � � � �

� � � � ��� �� � � � � � � � � � �

measurementmeasurement 1

measurement 2

meas. conditions MCEs

meas.3
meas.4
meas.5

meas.1
meas.2

cond. 2 MCE 1

cond. 1

meas.: measurement, data from one channel of read-out signal of a hybridized array

MCE: multiconditional experiment

cond.: (experimental) condition

17

Table 3.2: Database-related information (table structure)
Table = archive

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| tablesflag | bool | 1 |

| blobsflag | bool | 1 |

| structure version | int4 | 4 |

| headingsnestdepth | int4 | 4 |

+----------------------------------+----------------------------------+-------+

Table = master

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| family | text | var |

+----------------------------------+----------------------------------+-------+

the database’s structure version and nesting depth of its annotation hierar-
chy. The second is a register of the microarray families within the database
(Tab. 3.2).

The definition of experimental annotations consists of a table listing the
annotations along with enumeration type values, a table containing the ‘an-
notation headings’ which provide a hierarchy of topics categorizing the actual
annotations, and one recording those annotations usually being measurement
dependent (Tab. 3.3).

The annotation headings show a nesting depth of 3 heading levels. Here
the fourth level of the hierarchy comprises the annotations themselves, the
fifth their annotation values. For the annotation of an experiment the nested
headings and annotations are compiled into one HTML form by a web in-
terface. To accelerate the recursive CGI script, starting and end points of
blocks consisting of elements to be sequentially listed in the form (but not
necessarily being sequentially numbered in the linked list), are precompiled
into arrays and recorded after updating the definition tables (Tab. 3.4). To
give an expample how experiment annotation definitions may look like in
practice, Tab. 3.5lists the first part of common annotations. The common
annotations are used commonly for yeast, arabidopsis and human cancer
biopsies to describe the more technical part of the experiment. The HTML
output compiled from the table contents is shown in Fig. 3.2. The complete
set of common annotations can be found in the first part of each annotation
definition list on our web site1, e.g. in the yeast list2. The actual experiment
annotations which are entered via similar HTML forms are stored elsewhere

1http://www.dkfz.de/tbi/services/mchips
2http://www.dkfz.de/tbi/services/mchips.yeast.html, http://www.dkfz.de/tbi/services/mchips.yeast.txt

18

Table 3.3: Definition of experimental annotations (table structure)
Table = annotations

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| lastheadingno | int4 | 4 |

| ano | int4 | 4 |

| nextano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| nextvno | int4 | 4 |

| value | text | var |

+----------------------------------+----------------------------------+-------+

Table = annotationheadings

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| heading1no | int4 | 4 |

| heading1 | text | var |

| heading2no | int4 | 4 |

| heading2 | text | var |

| heading3no | int4 | 4 |

| heading3 | text | var |

+----------------------------------+----------------------------------+-------+

Table = measdep defaults

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| alwaysdep | int4 | 4 |

+----------------------------------+----------------------------------+-------+

19

Table 3.4: Script acceleration tables (table structure)
Table = minnext

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| j | int4 | 4 |

| h1 | text | var |

| h2 | text | var |

| h3 | text | var |

| ano | text | var |

| vno | text | var |

+----------------------------------+----------------------------------+-------+

Table = maxnext

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| j | int4 | 4 |

| h1 | text | var |

| h2 | text | var |

| h3 | text | var |

| ano | text | var |

| vno | text | var |

+----------------------------------+----------------------------------+-------+

Heading1 is the highest level of the annotation hierarchy followed by lower heading
levels, annotations and values. For any number j of a hierarchy element, the
number of its first child in the next lower level is recorded in the relation minnext.
Here, it is stored under the attribute depicting this next lower level. ‘H1‘ to
‘h3‘ take the numers of elements in the three heading levels, ‘ano’ contains the
annotation numbers and vno the value numbers. Likewise, the number of the last
child in the next lower level is recorded in the relation maxnext.

20

Table 3.5: Definition of experimental annotations (table contents)
yeast=> select * from annotationheadings order by heading1no, heading2no, heading3no;

heading1no|heading1 |heading2no|heading2 |heading3no|heading3

----------+-----------------------------+----------+-------------+----------+------------------------

1|common annotations | 1|array | 1|-

1|common annotations | 2|hybridisation| 2|RNA preparation

1|common annotations | 2|hybridisation| 3|labeling

1|common annotations | 2|hybridisation| 4|hybridisation conditions

1|common annotations | 2|hybridisation| 5|stringency wash

1|common annotations | 2|hybridisation| 6|detection

1|common annotations | 3|sample | 7|-

1|common annotations | 4|submission | 8|-

2|organism specific annotations| 5|genotype | 9|-

... skipping ...

yeast=> select * from annotations order by lastheadingno, ano, vno;

lastheadingno| ano|nextano|annotation | vno|nextvno|value

-------------+----+-------+-------------------------+----+-------+------------------------------

1| 1| 2|array source | 10| 11|self made

1| 1| 2|array source | 11| 12|genome systems

1| 1| 2|array source | 12| 13|clontech

1| 1| 2|array source | 13| 14|research genetics

1| 2| 3|array series | 0| 0|[]

1| 3| 4|array individual | 0| 0|[]

1| 4| 5|array support | 14| 15|nylon

1| 4| 5|array support | 15| 16|polypropylene

1| 4| 5|array support | 16| 17|glass

1| 5| 6|spotted material | 17| 18|PCR

1| 5| 6|spotted material | 18| 19|colonies

1| 5| 6|spotted material | 19| 20|DNA-oligo

1| 5| 6|spotted material | 20| 21|PNA-oligo

1| 6| 7|readfile | 0| 0|[]

1| 7| 8|array hybridisation | 0| 0|[]

2| 8| 9|material source | 21| 22|fresh

2| 8| 9|material source | 22| 23|frozen

... skipping ...

21

Figure 3.2: Definition of experimental annotations (HTML output)

22

Table 3.6: Spot categories
category table name

genes y1 genes
empty spots y1 empty
heterologous DNA y1 hetrl
heterologous DNA with known concentration y1 hetkc
reference spots y1 refgs

as described below (3.3.1, 3.4.2 and 3.5.3).

3.2 Microarray Families

3.2.1 Gene annotations

A database can comprise different sorts of microarrays. Each family repre-
sents a unique spotting scheme including genes or ESTs and reference spots.
For a family referred to as ’y1’ by the master table of the database yeast,
there are 5 gene annotation tables corresponding to the categories mentioned
in 2.2.1 (Tab. 3.6). All of these tables share the same scheme (Tab. 3.7).
An index has been computed for every attribute with the name of each index
relation consisting of the family, the spot category and an abbreviation of
the indexed attribute (attributes and their indexes are listed in the same
sequence).

The attribute ’spotno’ serves as a key connecting to the tables which con-
tain hybridisation intensities. ’field’, ’plate’, ’letter’ and ’number’ correspond
to the spot location on the array as well as to the DNA stock kept in mi-
crotiter plates. Two fields of fix length (’ext link7’ and ’ext link10’) are
reserved for keys linking to external databases and ’description’ and ’func-
tional catalogue’ contain a brief description of the protein and its function
of variable form and size. Certain spotsets may have to be normalized sep-
arately. In such cases the partition of the spots is recorded by the attribute
‘partition’. In the example given (Fig. 3.3), which was taken from the
database ’humanbiopsy’ (containing data derived from renal clear cell carci-
noma, family ’hb1’), there are two partitions of the entire set leading to a
‘bifurcation’ of data points in a scatter plot. In this example the partitions
correspond to the location of the spots on two different nylon filters (the
spotset being too big to be spotted on one filter) which have to be hybridised
in separate tubes.

23

Figure 3.3: Partitions showing differential slope in a scatterplot

24

Table 3.7: Gene annotations (table structure)
Table = y1 genes

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| spotno | int4 | 4 |

| field | int4 | 4 |

| plate | int4 | 4 |

| letter | char() | 1 |

| number | int4 | 4 |

| ext link7 | char() | 7 |

| ext link10 | char() | 10 |

| partition | int4 | 4 |

| description | text | var |

| functional catalogue | text | var |

+----------------------------------+----------------------------------+-------+

Indices: y1 genes isn

y1 genes if

y1 genes ip

y1 genes il

y1 genes in

y1 genes in7

y1 genes in10

y1 genes ipart

y1 genes id

y1 genes ifc

Table 3.8: Information about an array family (table structure)
Table = y1

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiments | int4 | 4 |

| tables | int4 | 4 |

| i fileformat | int4 | 4 |

+----------------------------------+----------------------------------+-------+

3.2.2 Administration of the comprised multiconditional
experiments

There are two more tables belonging to an array family (see detailed scheme
http://www.dkfz-heidelberg.de/tbi/services/mchips/scheme2.pdf, also
in ’DATABASE MANAGEMENT’). To stick to the example family ’y1’
(comprehensive yeast filter), there is a table named ’y1’ (Tab. 3.8) storing
the number of multiconditional experiments as well as the number of mea-
surements in the family. Since each measurement is initially stored in a
separate table (see 3.5.1) and identified with a unique table number, their
quantity is attributed as ‘tables’. Generally, ‘measurement’ 5 identifies the
5th measurement of a particular experiment (see 3.4.1), whereas ‘tables’ /
‘tableno’ hold quantity / IDs of measurements on a family-wide scale (even
when the initial tables have been merged into a block).

25

Table 3.9: Experiments contained in an array family (table structure)
Table = y1 master

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| ex name | text | var |

| ex table | int4 | 4 |

| conditions | int4 | 4 |

| condep ano | text | var |

+----------------------------------+----------------------------------+-------+

Indices: y1 master iex

y1 master ien

y1 master iet

y1 master ico

y1 master ica

The third attribute (‘intput file format’) stores the version number of the
script capable of reformatting an output file of a particular imaging software
into the format of a database table. This matlab function exists in different
versions enumerated sequentially for different imaging software types and
spotting schemes.

The second table lists the multiconditional experiments contained by the fam-
ily (Tab. 3.9). Each experiment is assigned a number and a name. ’ex table’
links to the administration table for the hybridisation intensities as well as to
the experimental annotations. For convenience in algorithmical handling, we
redundantly included here also the number of comprised conditions as well
as the varied experimental parameters (’condition-dependent annotations’).

3.3 Multiconditional Experiments

3.3.1 Experimental annotations constant within the mul-
ticonditional experiment

There may be an arbitrary number of multiconditional experiments hybridised
on a particular filter family. They may be timecourses, variations of agent
concentrations in culture media, comparisons of different genotypes just to
give some examples, consisting of several experimental conditions intended to
be directly comparable. To learn something from such a comparison not too
many parameters should be altered among the conditions performed. Hence
most of the experimental conditions are constant for the entire experiment,
some are condition dependent and some are measurement dependent, i.e.
they can take different values for each single measurement, like e.g. the label

26

Table 3.10: Experimental annotations constant throughout the experiment
(table structure)

Table = y1 constant categoricalvalue 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| cvalue | text | var |

+----------------------------------+----------------------------------+-------+

Table = y1 constant number 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| nvalue | float8 | 8 |

+----------------------------------+----------------------------------+-------+

incorporation rate. For fast annotation via html questionaire, the data are
required in the form of these three sets of annotations. For statistical analy-
sis, they are needed hybridization wise. Redundancy caused by hybridization
wise storage of the entire set of annotations would have little effect in terms
of storage space or performance because these annotations are of negligible
volume. However, we decided to store them in separate relations for con-
venient algorithmical handling: Splitting up a uniform set of hybridization
wise stored annotations into hybridization-dependent, condition-dependent
and constant annotations requires repeated value comparison, whereas the
distribution of constant and condition-dependent annotations to each hy-
bridization is a trivial task.

Constant annotations are stored in two separate tables per multiconditional
experiment just to be more readable rather than for computational reasons
(Tab. 3.10). These tables are children of parental tables ‘y1 constant categoricalvalue’
and ‘y1 constant number’ respectively. The numbers within their names as
well as the content of the field ’experiment’ correspond to the according key
in y1 master. The first table takes the enumeration type (‘categorical’) an-
notations, the second one those consisting of a number. This is reflected by
the type of the attributes ‘cvalue’ and ‘nvalue’ which is the only difference
among the above schemes. As a representative of intended redundancy both
number (‘ano’) and name (‘annotation’) are enlisted for an annotation as well
as for its value. For the small extent of the annotations (1.3.2.2) this does

27

Table 3.11: Association of experiments, conditions and measurements (table
structure)

Table = y1 experiment 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| condition | int4 | 4 |

| hybridization | int4 | 4 |

| measurement | int4 | 4 |

| tableno | int4 | 4 |

+----------------------------------+----------------------------------+-------+

not have major consequences for storage space nor for performance. However
the redundancy might serve to reconstruct experimental annotations (which
would be very time consuming to re-enter by hand) if an error occurs in the
numbering of annotations or values. Redundant storage appears advisable
here because as new kinds of experiments evolve, annotation definitions are
under constant change.

3.3.2 Administration of the comprised condiditions

For each condition in a multiconditional experiment, there is a table like
the following which for our example family y1 inherits from a parental re-
lation y1 experiment. For the above experiment no. 65 it will be named
y1 ex 65 (Tab. 3.11). ’experiment’ will contain a 65 as well for the entirety
of tuples to identify the experiment in a family-wide context, since the exper-
iment tables can be merged into big block relations as for the intensities (see
2.2.2, 3.5.2). The comprised conditions have been studied by several repeat-
edly performed hybridizations which themselves consist of one (radioactive
labelling, monochannel) or more (multichannel fluorescence data) measure-
ments (frequently called channels or images). While ’measurement’ identifies
a measurement in the context of its particular experiment, ’tableno’ holds its
family-wide ID. Both remain unchanged when the initial tables are merged
into a block.

28

Table 3.12: Association of experiments, conditions and measurements (table
content)

yeast=> select * from y1 experiment 65 order by tableno;

experiment|condition|hybridization|measurement|tableno

----------+---------+-------------+-----------+-------

65| 0| 1| 1| 576

65| 0| 2| 2| 577

65| 0| 3| 3| 578

65| 1| 4| 4| 579

65| 1| 5| 5| 580

65| 1| 6| 6| 581

65| 2| 7| 7| 582

65| 2| 8| 8| 583

65| 2| 9| 9| 584

65| 2| 10| 10| 585

65| 2| 11| 11| 586

65| 3| 12| 12| 587

65| 3| 13| 13| 588

65| 3| 14| 14| 589

65| 3| 15| 15| 590

65| 3| 16| 16| 591

(16 rows)

3.4 Experimental Conditions

3.4.1 Administration of the comprised hybridizations
and measurements

The number of successfully performed hybridizations and measurements may
vary among the conditions. As an example we show the content of the
above relation which outlines an experiment with radioactive (monochan-
nel) hybridizations (Tab. 3.12). The control condition is identified by a
zero whereas numbering of hybridizations and measurements starts at one.
While in the above case the measurement IDs correspond to those of the
hybridizations, they are different in multichannel experiments where each
hybridization comprises more than one measurement belonging to different
conditions. Whereas the sequence recorded in ‘measurement’ is due to the
experiment (with the first one of a hybridization usually being the ‘red’ chan-
nel), the purpose of ‘tableno’ is rather technical. It simply corresponds to
the order in which they were uploaded into the database, being a unique ID.

3.4.2 Experimental annotations dependent on the con-
dition

The condition dependent annotations describing experiment no. 65 are stored
in y1 conditiondependent 65 (Tab. 3.13). It shows the same structure as

29

Table 3.13: Condition dependent annotations (table structure)
Table = y1 conditiondependent 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| condition | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| cvalue | text | var |

| nvalue | float8 | 8 |

+----------------------------------+----------------------------------+-------+

Table 3.14: Condition dependent annotations (table content)
yeast=> select * from y1 conditiondependent 65 order by ano, condition, vno;

experiment|condition| ano|annotation | vno|cvalue |nvalue

----------+---------+----+-----------------+----+------------------+------

65| 0|1035|strain |1091|3E2 |NaN

65| 1|1035|strain |1091|3E2 |NaN

65| 2|1035|strain |1092|702 |NaN

65| 3|1035|strain |1092|702 |NaN

65| 0|1037|genetic variation|1100|WT |NaN

65| 1|1037|genetic variation|1100|WT |NaN

65| 2|1037|genetic variation|1099|inducible promoter|NaN

65| 3|1037|genetic variation|1099|inducible promoter|NaN

65| 0|1038|transgene | 0|*** |0

65| 1|1038|transgene | 0|*** |0

65| 2|1038|transgene | 0|*** |4111

65| 3|1038|transgene | 0|*** |4111

65| 0|1049|glucose | 0|*** |2

65| 1|1049|glucose | 0|*** |0

65| 2|1049|glucose | 0|*** |2

65| 3|1049|glucose | 0|*** |0

65| 0|1050|galactose | 0|*** |0

65| 1|1050|galactose | 0|*** |2

65| 2|1050|galactose | 0|*** |0

65| 3|1050|galactose | 0|*** |2

(20 rows)

for the constant annotations (described in 3.3.1), except for including both
numbers (stored in ’nvalue’) and enumeration type values (in ’cvalue’) into
one table. Moreover it contains an additional attribute accounting for the
condition. Enumeration of conditions starts at zero for the control condition
(Tab. 3.14). In this particular experiment both the genotype of the yeast cells
and the carbon source of their medium had been varied. For enumeration
type annotations like ’strain’, a valid valuenumber (’vno’) is listed but the
field ’nvalue’ contains ’not-a-number’. Conversely, floating point number
annotations like ’transgene’ or ’glucose’ have valueno 0 and a dummy entry
for ’cvalue’, but a meaningful ’nvalue’ (namely the floating point value, wich
happens to be always a natural number in the above table).

Like in the above tables, a field is included that denotes the experiment

30

Table 3.15: Hybridization intensities (table structure)
Table = y1 g 589

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| tableno | int4 | 4 |

| spotno | int4 | 4 |

| prim | float8 | 8 |

| sec | float8 | 8 |

| prim bkg | float8 | 8 |

| sec bkg | float8 | 8 |

+----------------------------------+----------------------------------+-------+

Indices: y1 g 589 ipr

y1 g 589 ise

y1 g 589 isn

number for every tuple for identification in block context. The according
parental tables (in the above case ‘y1 conditiondependent’ is the name of the
parent) are themselves empty but mediate queries on all of their children (see
in 2.2.2). This means that the query syntax given on top of the table list is
never used. Instead all the algorithms involved would query this table by

yeast=> select * from y1 conditiondependent* where ex=65 order by ano, condition, vno;

resulting in the very same list.

3.5 Hybridisations

3.5.1 Hybridisation intensities

As listed in the administration table for experiment 65 (see 3.4.1), the third
measurement of the last condition is hybridisation number 589. The corre-
sponding intensities are stored in 5 separate tables (compare 2.2.1 & 3.2.1),
being accessed via the parental tables ‘y1 g’, ‘y1 e’, ‘y1 h’, ‘y1 k’ and ‘y1 r’.
They are of a uniform structure they inherited from their uniform parents,
in example listed in Tab. 3.15. Since this kind of tables is also accessed by
querying the parental table, ‘tableno’ mediates identification in block context,
linking to the administration table (y1 experiment). ‘Spotno’ identifies the
spot, corresponding to the identically named attribute of the gene annotation
table ‘y1 genes’ (3.2.1). In the tables ‘y1 e 589’, ‘y1 h 589’, ‘y1 k 589’ and
‘y1 r 589’ this attribute corresponds to the ‘spotno’ in ‘y1 empty’, ‘y1 hetrl’,
‘y1 hetkc’ and ‘y1 refgs’, respectively. The remaining attributes contain the
hybridisation intensities. Each gene or EST has been spotted in duplicate
resulting in two intensities (‘prim’ and ‘sec’) per hybridisation. The last two

31

Table 3.16: Hybridization intensities in a block (table structure)
Table = y1 g block1

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| tableno | int4 | 4 |

| spotno | int4 | 4 |

| prim | float8 | 8 |

| sec | float8 | 8 |

| prim bkg | float8 | 8 |

| sec bkg | float8 | 8 |

+----------------------------------+----------------------------------+-------+

Indices: y1 g block1 ipr

y1 g block1 ise

y1 g block1 isn

y1 g block1 itn

attributes are intended to take a local background value which is delivered by
most of the imaging software packages. Three indices have been computed.
‘y1 g 589 ipr’ and ‘y1 g 589 ise’ facilitate the search for specific hybridisa-
tion intensities (‘pr’ and ‘se’ for primary and secondary spots), ‘y1 g 589 isn’
querying certain spot numbers.

Many imaging software packages yield more than one intensity score and
background per spot. Commonly, they provide differently calculated inten-
sities (e.g. pixel mean, median), background intensities and various kinds of
quality or reliability measures. From these, the contents of the above tables
are either choosen or calculated as a starting point for standardized analysis
in the process of database upload.

3.5.2 Hybridisation intensities, ‘solidified’

As experiments are analysed and valued, hybridisations are deleted e.g. for
bad signal quality, written into another context or kept in the experiments
and conditions they were uploaded in. When a set of hybridisations is not
to be altered any more, it is solidified, that is written into large block tables
over night, as mentioned in 2.2.2.The separation into the 5 spot categories is
kept resulting in 5 block tables. Tuples of the above table will go e.g. into
y1 g block1 (Tab. 3.16). These tables have exactly the same structure as
the normal hybridisation tables. The only difference is that an index was
computed for the table numbers (named ‘y1 g block1 itn’) enabling rapid
hybridisation wise retrieval of the tuples from the block. Such a block was
tested with up to 538 hybridisations of the y1 type (comprising 6103 genes),
speeding up retrieval of an entire multiconditional experiment up to 15fold
compared to the unsolidified version depending on how many hybridisations

32

Table 3.17: Measurement-dependent annotations (table structure)
Table = y1 measurementdependent 65

+----------------------------------+----------------------------------+-------+

| Field | Type | Length|

+----------------------------------+----------------------------------+-------+

| experiment | int4 | 4 |

| condition | int4 | 4 |

| measurement | int4 | 4 |

| ano | int4 | 4 |

| annotation | text | var |

| vno | int4 | 4 |

| cvalue | text | var |

| nvalue | float8 | 8 |

+----------------------------------+----------------------------------+-------+

are comprised, and on its position in the database.

3.5.3 Measurement-dependent experimental annotations

For measurement-dependent annotations, structures mentioned for the condi-
tion dependent annotations (3.4.2) apply as well. The table y1 measurementdependent 65
contains the measurement-dependent annotations of multiconditional exper-
iment 65 (Tab. 3.17). It inherits from y1 measurementdependent and has
the same structure as y1 conditiondependent 65 except for one additional
attribute ‘measurement’, which is related to the intensity tables by relation
y1 experiment 65. ‘Condition’ is related to ‘measurement’ here as well to se-
cure this important information by repeated storage3. Although all defined
annotations have to be annotated for a multiconditional experiment, their
distribution among the hybridisation-dependent, condition-dependent and
constant database relations may vary from experiment to experiment. Anno-
tation starts by choosing the annotations which shall become measurement-
dependent and thereafter assigning a value to each of those annotations for
each measurement. Thereafter, the condition dependent annotations are se-
lected and annotated before the remaining constant annotations are entered.
The annotation process is mediated by a web interface such that annota-
tion can be performed from remote sites, enabling annotation even before
uploading of intensities, re-editing of assigned values and copy from similar
experiments to save the user from re-entering identical values.

3‘Hybridization’ is not included in this table, because assignment to the hybridizations
may readily be recovered from the sequence given by attribute ‘measurement’.

33

